/****************************************************************************** * Copyright (c) 2011, Duane Merrill. All rights reserved. * Copyright (c) 2011-2014, NVIDIA CORPORATION. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * Neither the name of the NVIDIA CORPORATION nor the * names of its contributors may be used to endorse or promote products * derived from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE FOR ANY * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * ******************************************************************************/ /** * \file * PTX intrinsics */ #pragma once #include "util_type.cuh" #include "util_arch.cuh" #include "util_namespace.cuh" /// Optional outer namespace(s) CUB_NS_PREFIX /// CUB namespace namespace cub { /** * \addtogroup UtilPtx * @{ */ /****************************************************************************** * PTX helper macros ******************************************************************************/ #ifndef DOXYGEN_SHOULD_SKIP_THIS // Do not document /** * Register modifier for pointer-types (for inlining PTX assembly) */ #if defined(_WIN64) || defined(__LP64__) #define __CUB_LP64__ 1 // 64-bit register modifier for inlined asm #define _CUB_ASM_PTR_ "l" #define _CUB_ASM_PTR_SIZE_ "u64" #else #define __CUB_LP64__ 0 // 32-bit register modifier for inlined asm #define _CUB_ASM_PTR_ "r" #define _CUB_ASM_PTR_SIZE_ "u32" #endif #endif // DOXYGEN_SHOULD_SKIP_THIS /****************************************************************************** * Inlined PTX intrinsics ******************************************************************************/ /** * \brief Shift-right then add. Returns (\p x >> \p shift) + \p addend. */ __device__ __forceinline__ unsigned int SHR_ADD( unsigned int x, unsigned int shift, unsigned int addend) { unsigned int ret; #if CUB_PTX_VERSION >= 200 asm("vshr.u32.u32.u32.clamp.add %0, %1, %2, %3;" : "=r"(ret) : "r"(x), "r"(shift), "r"(addend)); #else ret = (x >> shift) + addend; #endif return ret; } /** * \brief Shift-left then add. Returns (\p x << \p shift) + \p addend. */ __device__ __forceinline__ unsigned int SHL_ADD( unsigned int x, unsigned int shift, unsigned int addend) { unsigned int ret; #if CUB_PTX_VERSION >= 200 asm("vshl.u32.u32.u32.clamp.add %0, %1, %2, %3;" : "=r"(ret) : "r"(x), "r"(shift), "r"(addend)); #else ret = (x << shift) + addend; #endif return ret; } #ifndef DOXYGEN_SHOULD_SKIP_THIS // Do not document /** * Bitfield-extract. */ template __device__ __forceinline__ unsigned int BFE( UnsignedBits source, unsigned int bit_start, unsigned int num_bits, Int2Type byte_len) { unsigned int bits; #if CUB_PTX_VERSION >= 200 asm("bfe.u32 %0, %1, %2, %3;" : "=r"(bits) : "r"((unsigned int) source), "r"(bit_start), "r"(num_bits)); #else const unsigned int MASK = (1 << num_bits) - 1; bits = (source >> bit_start) & MASK; #endif return bits; } /** * Bitfield-extract for 64-bit types. */ template __device__ __forceinline__ unsigned int BFE( UnsignedBits source, unsigned int bit_start, unsigned int num_bits, Int2Type<8> byte_len) { const unsigned long long MASK = (1ull << num_bits) - 1; return (source >> bit_start) & MASK; } #endif // DOXYGEN_SHOULD_SKIP_THIS /** * \brief Bitfield-extract. Extracts \p num_bits from \p source starting at bit-offset \p bit_start. The input \p source may be an 8b, 16b, 32b, or 64b unsigned integer type. */ template __device__ __forceinline__ unsigned int BFE( UnsignedBits source, unsigned int bit_start, unsigned int num_bits) { return BFE(source, bit_start, num_bits, Int2Type()); } /** * \brief Bitfield insert. Inserts the \p num_bits least significant bits of \p y into \p x at bit-offset \p bit_start. */ __device__ __forceinline__ void BFI( unsigned int &ret, unsigned int x, unsigned int y, unsigned int bit_start, unsigned int num_bits) { #if CUB_PTX_VERSION >= 200 asm("bfi.b32 %0, %1, %2, %3, %4;" : "=r"(ret) : "r"(y), "r"(x), "r"(bit_start), "r"(num_bits)); #else x <<= bit_start; unsigned int MASK_X = ((1 << num_bits) - 1) << bit_start; unsigned int MASK_Y = ~MASK_X; ret = (y & MASK_Y) | (x & MASK_X); #endif } /** * \brief Three-operand add. Returns \p x + \p y + \p z. */ __device__ __forceinline__ unsigned int IADD3(unsigned int x, unsigned int y, unsigned int z) { #if CUB_PTX_VERSION >= 200 asm("vadd.u32.u32.u32.add %0, %1, %2, %3;" : "=r"(x) : "r"(x), "r"(y), "r"(z)); #else x = x + y + z; #endif return x; } /** * \brief Byte-permute. Pick four arbitrary bytes from two 32-bit registers, and reassemble them into a 32-bit destination register. For SM2.0 or later. * * \par * The bytes in the two source registers \p a and \p b are numbered from 0 to 7: * {\p b, \p a} = {{b7, b6, b5, b4}, {b3, b2, b1, b0}}. For each of the four bytes * {b3, b2, b1, b0} selected in the return value, a 4-bit selector is defined within * the four lower "nibbles" of \p index: {\p index } = {n7, n6, n5, n4, n3, n2, n1, n0} * * \par Snippet * The code snippet below illustrates byte-permute. * \par * \code * #include * * __global__ void ExampleKernel(...) * { * int a = 0x03020100; * int b = 0x07060504; * int index = 0x00007531; * * int selected = PRMT(a, b, index); // 0x07050301 * * \endcode * */ __device__ __forceinline__ int PRMT(unsigned int a, unsigned int b, unsigned int index) { int ret; asm("prmt.b32 %0, %1, %2, %3;" : "=r"(ret) : "r"(a), "r"(b), "r"(index)); return ret; } #ifndef DOXYGEN_SHOULD_SKIP_THIS // Do not document /** * Sync-threads barrier. */ __device__ __forceinline__ void BAR(int count) { asm volatile("bar.sync 1, %0;" : : "r"(count)); } /** * Floating point multiply. (Mantissa LSB rounds towards zero.) */ __device__ __forceinline__ float FMUL_RZ(float a, float b) { float d; asm("mul.rz.f32 %0, %1, %2;" : "=f"(d) : "f"(a), "f"(b)); return d; } /** * Floating point multiply-add. (Mantissa LSB rounds towards zero.) */ __device__ __forceinline__ float FFMA_RZ(float a, float b, float c) { float d; asm("fma.rz.f32 %0, %1, %2, %3;" : "=f"(d) : "f"(a), "f"(b), "f"(c)); return d; } #endif // DOXYGEN_SHOULD_SKIP_THIS /** * \brief Terminates the calling thread */ __device__ __forceinline__ void ThreadExit() { asm("exit;"); } /** * \brief Returns the warp lane ID of the calling thread */ __device__ __forceinline__ unsigned int LaneId() { unsigned int ret; asm("mov.u32 %0, %laneid;" : "=r"(ret) ); return ret; } /** * \brief Returns the warp ID of the calling thread. Warp ID is guaranteed to be unique among warps, but may not correspond to a zero-based ranking within the thread block. */ __device__ __forceinline__ unsigned int WarpId() { unsigned int ret; asm("mov.u32 %0, %warpid;" : "=r"(ret) ); return ret; } /** * \brief Returns the warp lane mask of all lanes less than the calling thread */ __device__ __forceinline__ unsigned int LaneMaskLt() { unsigned int ret; asm("mov.u32 %0, %lanemask_lt;" : "=r"(ret) ); return ret; } /** * \brief Returns the warp lane mask of all lanes less than or equal to the calling thread */ __device__ __forceinline__ unsigned int LaneMaskLe() { unsigned int ret; asm("mov.u32 %0, %lanemask_le;" : "=r"(ret) ); return ret; } /** * \brief Returns the warp lane mask of all lanes greater than the calling thread */ __device__ __forceinline__ unsigned int LaneMaskGt() { unsigned int ret; asm("mov.u32 %0, %lanemask_gt;" : "=r"(ret) ); return ret; } /** * \brief Returns the warp lane mask of all lanes greater than or equal to the calling thread */ __device__ __forceinline__ unsigned int LaneMaskGe() { unsigned int ret; asm("mov.u32 %0, %lanemask_ge;" : "=r"(ret) ); return ret; } /** @} */ // end group UtilPtx /** * \brief Shuffle-up for any data type. Each warp-lanei obtains the value \p input contributed by warp-lanei-src_offset. For thread lanes \e i < src_offset, the thread's own \p input is returned to the thread. ![](shfl_up_logo.png) * \ingroup WarpModule * * \par * - Available only for SM3.0 or newer * * \par Snippet * The code snippet below illustrates each thread obtaining a \p double value from the * predecessor of its predecessor. * \par * \code * #include // or equivalently * * __global__ void ExampleKernel(...) * { * // Obtain one input item per thread * double thread_data = ... * * // Obtain item from two ranks below * double peer_data = ShuffleUp(thread_data, 2); * * \endcode * \par * Suppose the set of input \p thread_data across the first warp of threads is {1.0, 2.0, 3.0, 4.0, 5.0, ..., 32.0}. * The corresponding output \p peer_data will be {1.0, 2.0, 1.0, 2.0, 3.0, ..., 30.0}. * */ template __device__ __forceinline__ T ShuffleUp( T input, ///< [in] The value to broadcast int src_offset) ///< [in] The relative down-offset of the peer to read from { enum { SHFL_C = 0, }; typedef typename UnitWord::ShuffleWord ShuffleWord; const int WORDS = (sizeof(T) + sizeof(ShuffleWord) - 1) / sizeof(ShuffleWord); T output; ShuffleWord *output_alias = reinterpret_cast(&output); ShuffleWord *input_alias = reinterpret_cast(&input); #pragma unroll for (int WORD = 0; WORD < WORDS; ++WORD) { unsigned int shuffle_word = input_alias[WORD]; asm( " shfl.up.b32 %0, %1, %2, %3;" : "=r"(shuffle_word) : "r"(shuffle_word), "r"(src_offset), "r"(SHFL_C)); output_alias[WORD] = (ShuffleWord) shuffle_word; } return output; } /** * \brief Shuffle-down for any data type. Each warp-lanei obtains the value \p input contributed by warp-lanei+src_offset. For thread lanes \e i >= WARP_THREADS, the thread's own \p input is returned to the thread. ![](shfl_down_logo.png) * \ingroup WarpModule * * \par * - Available only for SM3.0 or newer * * \par Snippet * The code snippet below illustrates each thread obtaining a \p double value from the * successor of its successor. * \par * \code * #include // or equivalently * * __global__ void ExampleKernel(...) * { * // Obtain one input item per thread * double thread_data = ... * * // Obtain item from two ranks below * double peer_data = ShuffleDown(thread_data, 2); * * \endcode * \par * Suppose the set of input \p thread_data across the first warp of threads is {1.0, 2.0, 3.0, 4.0, 5.0, ..., 32.0}. * The corresponding output \p peer_data will be {3.0, 4.0, 5.0, 6.0, 7.0, ..., 32.0}. * */ template __device__ __forceinline__ T ShuffleDown( T input, ///< [in] The value to broadcast int src_offset) ///< [in] The relative up-offset of the peer to read from { enum { SHFL_C = CUB_PTX_WARP_THREADS - 1, }; typedef typename UnitWord::ShuffleWord ShuffleWord; const int WORDS = (sizeof(T) + sizeof(ShuffleWord) - 1) / sizeof(ShuffleWord); T output; ShuffleWord *output_alias = reinterpret_cast(&output); ShuffleWord *input_alias = reinterpret_cast(&input); #pragma unroll for (int WORD = 0; WORD < WORDS; ++WORD) { unsigned int shuffle_word = input_alias[WORD]; asm( " shfl.down.b32 %0, %1, %2, %3;" : "=r"(shuffle_word) : "r"(shuffle_word), "r"(src_offset), "r"(SHFL_C)); output_alias[WORD] = (ShuffleWord) shuffle_word; } return output; } #ifndef DOXYGEN_SHOULD_SKIP_THIS // Do not document /** * \brief Shuffle-broadcast for any data type. Each warp-lanei obtains the value \p input contributed by warp-lanesrc_lane. For \p src_lane < 0 or \p src_lane >= WARP_THREADS, then the thread's own \p input is returned to the thread. ![](shfl_broadcast_logo.png) * \ingroup WarpModule * * \par * - Available only for SM3.0 or newer */ template __device__ __forceinline__ T ShuffleBroadcast( T input, ///< [in] The value to broadcast int src_lane, ///< [in] Which warp lane is to do the broadcasting int logical_warp_threads) ///< [in] Number of threads per logical warp { typedef typename UnitWord::ShuffleWord ShuffleWord; const int WORDS = (sizeof(T) + sizeof(ShuffleWord) - 1) / sizeof(ShuffleWord); T output; ShuffleWord *output_alias = reinterpret_cast(&output); ShuffleWord *input_alias = reinterpret_cast(&input); #pragma unroll for (int WORD = 0; WORD < WORDS; ++WORD) { unsigned int shuffle_word = input_alias[WORD]; asm("shfl.idx.b32 %0, %1, %2, %3;" : "=r"(shuffle_word) : "r"(shuffle_word), "r"(src_lane), "r"(logical_warp_threads - 1)); output_alias[WORD] = (ShuffleWord) shuffle_word; } return output; } #endif // DOXYGEN_SHOULD_SKIP_THIS /** * \brief Shuffle-broadcast for any data type. Each warp-lanei obtains the value \p input contributed by warp-lanesrc_lane. For \p src_lane < 0 or \p src_lane >= WARP_THREADS, then the thread's own \p input is returned to the thread. ![](shfl_broadcast_logo.png) * \ingroup WarpModule * * \par * - Available only for SM3.0 or newer * * \par Snippet * The code snippet below illustrates each thread obtaining a \p double value from warp-lane0. * * \par * \code * #include // or equivalently * * __global__ void ExampleKernel(...) * { * // Obtain one input item per thread * double thread_data = ... * * // Obtain item from thread 0 * double peer_data = ShuffleBroadcast(thread_data, 0); * * \endcode * \par * Suppose the set of input \p thread_data across the first warp of threads is {1.0, 2.0, 3.0, 4.0, 5.0, ..., 32.0}. * The corresponding output \p peer_data will be {1.0, 1.0, 1.0, 1.0, 1.0, ..., 1.0}. * */ template __device__ __forceinline__ T ShuffleBroadcast( T input, ///< [in] The value to broadcast int src_lane) ///< [in] Which warp lane is to do the broadcasting { return ShuffleBroadcast(input, src_lane, CUB_PTX_WARP_THREADS); } /** * \brief Portable implementation of __all * \ingroup WarpModule */ __device__ __forceinline__ int WarpAll(int cond) { #if CUB_PTX_VERSION < 120 __shared__ volatile int warp_signals[CUB_PTX_MAX_SM_THREADS / CUB_PTX_WARP_THREADS]; if (LaneId() == 0) warp_signals[WarpId()] = 1; if (cond == 0) warp_signals[WarpId()] = 0; return warp_signals[WarpId()]; #else return __all(cond); #endif } /** * \brief Portable implementation of __any * \ingroup WarpModule */ __device__ __forceinline__ int WarpAny(int cond) { #if CUB_PTX_VERSION < 120 __shared__ volatile int warp_signals[CUB_PTX_MAX_SM_THREADS / CUB_PTX_WARP_THREADS]; if (LaneId() == 0) warp_signals[WarpId()] = 0; if (cond) warp_signals[WarpId()] = 1; return warp_signals[WarpId()]; #else return __any(cond); #endif } } // CUB namespace CUB_NS_POSTFIX // Optional outer namespace(s)