/* * nvbio * Copyright (c) 2011-2014, NVIDIA CORPORATION. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * Neither the name of the NVIDIA CORPORATION nor the * names of its contributors may be used to endorse or promote products * derived from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE FOR ANY * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ // nvBWT.cu // #define NVBIO_CUDA_DEBUG #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "filelist.h" // PAC File Type enum PacType { BPAC = 0, WPAC = 1 }; using namespace nvbio; unsigned char nst_nt4_table[256] = { 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5 /*'-'*/, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 0, 4, 1, 4, 4, 4, 2, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 0, 4, 1, 4, 4, 4, 2, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4 }; #define RAND 0 #define RAND48 1 #if (GENERATOR == RAND) || ((GENERATOR == RAND48) && defined(WIN32)) // generate random base pairs using rand() inline void srand_bp(const unsigned int s) { srand(s); } inline float frand() { return float(rand()) / float(RAND_MAX); } inline uint8 rand_bp() { return uint8( frand() * 4 ) & 3; } #elif (GENERATOR == RAND48) // generate random base pairs using rand48() inline void srand_bp(const unsigned int s) { srand48(s); } inline uint8 rand_bp() { return uint8( drand48() * 4 ) & 3; } #endif struct Counter { Counter() : m_size(0), m_reads(0) {} void begin_read() { m_reads++; } void end_read() {} void id(const uint8 c) {} void read(const uint8 c) { m_size++; } uint64 m_size; uint32 m_reads; }; template struct Writer { Writer(stream_type stream, const uint32 reads, const uint64 max_size) : m_max_size(max_size), m_size(0), m_stream( stream ) { m_bntseq.seed = 11; m_bntseq.anns_data.resize( reads ); m_bntseq.anns_info.resize( reads ); srand_bp( m_bntseq.seed ); for (uint32 i = 0; i < 4; ++i) m_freq[i] = 0; } void begin_read() { BNTAnnData& ann_data = m_bntseq.anns_data[ m_bntseq.n_seqs ]; ann_data.len = 0; ann_data.gi = 0; ann_data.offset = m_size; ann_data.n_ambs = 0; BNTAnnInfo& ann_info = m_bntseq.anns_info[ m_bntseq.n_seqs ]; ann_info.anno = "null"; m_lasts = 0; } void end_read() { m_bntseq.n_seqs++; } void id(const uint8 c) { m_bntseq.anns_info[ m_bntseq.n_seqs ].name.push_back(char(c)); } void read(const uint8 s) { if (m_size < m_max_size) { const uint8 c = nst_nt4_table[s]; const uint8 sc = c < 4 ? c : rand_bp(); m_stream[ m_size ] = sc; // keep track of the symbol frequencies ++m_freq[sc]; if (c >= 4) // we have an N { if (m_lasts == s) // contiguous N { // increment length of the last hole ++m_bntseq.ambs.back().len; } else { // beginning of a new hole BNTAmb amb; amb.len = 1; amb.offset = m_size; amb.amb = s; m_bntseq.ambs.push_back( amb ); ++m_bntseq.anns_data[ m_bntseq.n_seqs ].n_ambs; ++m_bntseq.n_holes; } } // save last symbol m_lasts = s; // update sequence length BNTAnnData& ann_data = m_bntseq.anns_data[ m_bntseq.n_seqs ]; ann_data.len++; } m_bntseq.l_pac++; m_size++; } uint64 m_max_size; uint64 m_size; stream_type m_stream; BNTSeq m_bntseq; uint8 m_lasts; uint32 m_freq[4]; }; template bool save_stream(FILE* output_file, const uint64 seq_words, const StreamType* stream) { for (uint64 words = 0; words < seq_words; words += 1024) { const uint32 n_words = (uint32)nvbio::min( uint64(1024u), uint64(seq_words - words) ); if (fwrite( stream + words, sizeof(StreamType), n_words, output_file ) != n_words) return false; } return true; } // // .wpac file // void save_wpac(const uint32 seq_length, const uint32* string_storage, const char* pac_name) { log_info(stderr, "\nwriting \"%s\"... started\n", pac_name); const uint32 seq_words = util::divide_ri( seq_length, 16 ); FILE* output_file = fopen( pac_name, "wb" ); if (output_file == NULL) { log_error(stderr, " could not open output file \"%s\"!\n", pac_name ); exit(1); } // write the sequence length as a uint64 const uint64 len = seq_length; fwrite( &len, sizeof(len), 1u, output_file ); // save the uint32 stream if (save_stream( output_file, seq_words, string_storage ) == false) { log_error(stderr, " writing failed!\n"); exit(1); } fclose( output_file ); log_info(stderr, "writing \"%s\"... done\n", pac_name); } // // .pac file // void save_bpac(const uint32 seq_length, const uint32* string_storage, const char* pac_name) { typedef PackedStream stream_type; typedef PackedStream< uint8*, uint8,2,true,int64> pac_stream_type; log_info(stderr, "\nwriting \"%s\"... started\n", pac_name); const uint32 bps_per_byte = 4u; const uint64 seq_bytes = (seq_length + bps_per_byte - 1u) / bps_per_byte; FILE* output_file = fopen( pac_name, "wb" ); if (output_file == NULL) { log_error(stderr, " could not open output file \"%s\"!\n", pac_name ); exit(1); } // copy the uint32 packed stream into a uint8 pac stream thrust::host_vector pac_storage( seq_bytes ); pac_stream_type pac_string( nvbio::plain_view( pac_storage ) ); stream_type string( string_storage ); for (uint32 i = 0; i < seq_length; ++i) pac_string[i] = string[i]; // save the uint8 stream if (save_stream( output_file, seq_bytes, nvbio::raw_pointer( pac_storage ) ) == false) { log_error(stderr, " writing failed!\n"); exit(1); } // the following code makes the pac file size always (l_pac/4+1+1) if (seq_length % 4 == 0) { const uint8 ct = 0; fwrite( &ct, 1, 1, output_file ); } { const uint8 ct = seq_length % 4; fwrite( &ct, 1, 1, output_file ); } fclose( output_file ); log_info(stderr, "writing \"%s\"... done\n", pac_name); } // // .pac | .wpac file // void save_pac(const uint32 seq_length, const uint32* string_storage, const char* pac_name, const PacType pac_type) { if (pac_type == BPAC) save_bpac( seq_length, string_storage, pac_name ); else save_wpac( seq_length, string_storage, pac_name ); } // // .bwt file // void save_bwt(const uint32 seq_length, const uint32 seq_words, const uint32 primary, const uint32* cumFreq, const uint32* h_bwt_storage, const char* bwt_name) { log_info(stderr, "\nwriting \"%s\"... started\n", bwt_name); FILE* output_file = fopen( bwt_name, "wb" ); if (output_file == NULL) { log_error(stderr, " could not open output file \"%s\"!\n", bwt_name ); exit(1); } fwrite( &primary, sizeof(uint32), 1, output_file ); fwrite( cumFreq, sizeof(uint32), 4, output_file ); if (save_stream( output_file, seq_words, h_bwt_storage ) == false) { log_error(stderr, " writing failed!\n"); exit(1); } fclose( output_file ); log_info(stderr, "writing \"%s\"... done\n", bwt_name); } // // .sa file // void save_ssa(const uint32 seq_length, const uint32 sa_intv, const uint32 ssa_len, const uint32 primary, const uint32* cumFreq, const uint32* h_ssa, const char* sa_name) { log_info(stderr, "\nwriting \"%s\"... started\n", sa_name); FILE* output_file = fopen( sa_name, "wb" ); if (output_file == NULL) { log_error(stderr, " could not open output file \"%s\"!\n", sa_name ); exit(1); } fwrite( &primary, sizeof(uint32), 1u, output_file ); fwrite( &cumFreq, sizeof(uint32), 4u, output_file ); fwrite( &sa_intv, sizeof(uint32), 1u, output_file ); fwrite( &seq_length, sizeof(uint32), 1u, output_file ); fwrite( &h_ssa[1], sizeof(uint32), ssa_len-1, output_file ); fclose( output_file ); log_info(stderr, "writing \"%s\"... done\n", sa_name); } int build( const char* input_name, const char* output_name, const char* pac_name, const char* rpac_name, const char* bwt_name, const char* rbwt_name, const char* sa_name, const char* rsa_name, const uint64 max_length, const PacType pac_type, const bool compute_crc) { std::vector sortednames; list_files(input_name, sortednames); uint32 n_inputs = (uint32)sortednames.size(); log_info(stderr, "\ncounting bps... started\n"); // count entire sequence length Counter counter; for (uint32 i = 0; i < n_inputs; ++i) { log_info(stderr, " counting \"%s\"\n", sortednames[i].c_str()); FASTA_inc_reader fasta( sortednames[i].c_str() ); if (fasta.valid() == false) { log_error(stderr, " unable to open file\n"); exit(1); } while (fasta.read( 1024, counter ) == 1024); } log_info(stderr, "counting bps... done\n"); const uint64 seq_length = nvbio::min( (uint64)counter.m_size, (uint64)max_length ); const uint32 bps_per_word = sizeof(uint32)*4u; const uint64 seq_words = (seq_length + bps_per_word - 1u) / bps_per_word; log_info(stderr, "\nstats:\n"); log_info(stderr, " reads : %u\n", counter.m_reads ); log_info(stderr, " sequence length : %llu bps (%.1f MB)\n", seq_length, float(seq_words*sizeof(uint32))/float(1024*1024)); log_info(stderr, " buffer size : %.1f MB\n", 2*seq_words*sizeof(uint32)/1.0e6f ); const uint32 sa_intv = nvbio::io::FMIndexData::SA_INT; const uint32 ssa_len = (seq_length + sa_intv) / sa_intv; // allocate the actual storage thrust::host_vector h_string_storage( seq_words+1 ); thrust::host_vector h_bwt_storage( seq_words+1 ); thrust::host_vector h_ssa( ssa_len ); typedef PackedStream const_stream_type; typedef PackedStream< uint32*,uint8,io::FMIndexData::BWT_BITS,io::FMIndexData::BWT_BIG_ENDIAN> stream_type; stream_type h_string( nvbio::plain_view( h_string_storage ) ); uint32 cumFreq[4] = { 0, 0, 0, 0 }; log_info(stderr, "\nbuffering bps... started\n"); // read all files { Writer writer( h_string, counter.m_reads, seq_length ); for (uint32 i = 0; i < n_inputs; ++i) { log_info(stderr, " buffering \"%s\"\n", sortednames[i].c_str()); FASTA_inc_reader fasta( sortednames[i].c_str() ); if (fasta.valid() == false) { log_error(stderr, " unable to open file!\n"); exit(1); } while (fasta.read( 1024, writer ) == 1024); } save_bns( writer.m_bntseq, output_name ); // compute the cumulative symbol frequencies cumFreq[0] = writer.m_freq[0]; cumFreq[1] = writer.m_freq[1] + cumFreq[0]; cumFreq[2] = writer.m_freq[2] + cumFreq[1]; cumFreq[3] = writer.m_freq[3] + cumFreq[2]; if (cumFreq[3] != seq_length) { log_error(stderr, " mismatching symbol frequencies!\n"); log_error(stderr, " (%u, %u, %u, %u)\n", cumFreq[0], cumFreq[1], cumFreq[2], cumFreq[3]); exit(1); } } log_info(stderr, "buffering bps... done\n"); if (compute_crc) { const uint32 crc = crcCalc( h_string, uint32(seq_length) ); log_info(stderr, " crc: %u\n", crc); } try { BWTParams params; uint32 primary; thrust::device_vector d_string_storage( h_string_storage ); thrust::device_vector d_bwt_storage( seq_words+1 ); const_stream_type d_string( nvbio::plain_view( d_string_storage ) ); stream_type d_bwt( nvbio::plain_view( d_bwt_storage ) ); Timer timer; log_info(stderr, "\nbuilding forward BWT... started\n"); timer.start(); { StringBWTSSAHandler output( seq_length, // string length d_string, // string sa_intv, // SSA sampling interval d_bwt, // output bwt iterator nvbio::plain_view( h_ssa ) ); // output ssa iterator cuda::blockwise_suffix_sort( seq_length, d_string, output, ¶ms ); // remove the dollar symbol output.remove_dollar(); primary = output.primary(); } timer.stop(); log_info(stderr, "building forward BWT... done: %um:%us\n", uint32(timer.seconds()/60), uint32(timer.seconds())%60); log_info(stderr, " primary: %u\n", primary); // save everything to disk { // copy to the host thrust::copy( d_bwt_storage.begin(), d_bwt_storage.begin() + seq_words, h_bwt_storage.begin() ); if (compute_crc) { const_stream_type h_bwt( nvbio::plain_view( h_bwt_storage ) ); const uint32 crc = crcCalc( h_bwt, uint32(seq_length) ); log_info(stderr, " crc: %u\n", crc); } save_pac( seq_length, nvbio::plain_view( h_string_storage ), pac_name, pac_type ); save_bwt( seq_length, seq_words, primary, cumFreq, nvbio::plain_view( h_bwt_storage ), bwt_name ); save_ssa( seq_length, sa_intv, ssa_len, primary, cumFreq, nvbio::plain_view( h_ssa ), sa_name ); } // reverse the string in h_string_storage { // reuse the bwt storage to build the reverse uint32* h_rbase_stream = nvbio::plain_view( h_bwt_storage ); stream_type h_rstring( h_rbase_stream ); // reverse the string for (uint32 i = 0; i < seq_length; ++i) h_rstring[i] = h_string[ seq_length - i - 1u ]; // and now swap the vectors h_bwt_storage.swap( h_string_storage ); h_string = stream_type( nvbio::plain_view( h_string_storage ) ); // and copy back the new string to the device d_string_storage = h_string_storage; } log_info(stderr, "\nbuilding reverse BWT... started\n"); timer.start(); { StringBWTSSAHandler output( seq_length, // string length d_string, // string sa_intv, // SSA sampling interval d_bwt, // output bwt iterator nvbio::plain_view( h_ssa ) ); // output ssa iterator cuda::blockwise_suffix_sort( seq_length, d_string, output, ¶ms ); // remove the dollar symbol output.remove_dollar(); primary = output.primary(); } timer.stop(); log_info(stderr, "building reverse BWT... done: %um:%us\n", uint32(timer.seconds()/60), uint32(timer.seconds())%60); log_info(stderr, " primary: %u\n", primary); // save everything to disk { // copy to the host thrust::copy( d_bwt_storage.begin(), d_bwt_storage.begin() + seq_words, h_bwt_storage.begin() ); if (compute_crc) { const_stream_type h_bwt( nvbio::plain_view( h_bwt_storage ) ); const uint32 crc = crcCalc( h_bwt, uint32(seq_length) ); log_info(stderr, " crc: %u\n", crc); } save_pac( seq_length, nvbio::plain_view( h_string_storage ), rpac_name, pac_type ); save_bwt( seq_length, seq_words, primary, cumFreq, nvbio::plain_view( h_bwt_storage ), rbwt_name ); save_ssa( seq_length, sa_intv, ssa_len, primary, cumFreq, nvbio::plain_view( h_ssa ), rsa_name ); } } catch (nvbio::cuda_error e) { log_error(stderr, "caught a nvbio::cuda_error exception:\n"); log_error(stderr, " %s\n", e.what()); } catch (nvbio::bad_alloc e) { log_error(stderr, "caught a nvbio::bad_alloc exception:\n"); log_error(stderr, " %s\n", e.what()); } catch (nvbio::logic_error e) { log_error(stderr, "caught a nvbio::logic_error exception:\n"); log_error(stderr, " %s\n", e.what()); } catch (nvbio::runtime_error e) { log_error(stderr, "caught a nvbio::runtime_error exception:\n"); log_error(stderr, " %s\n", e.what()); } catch (std::bad_alloc e) { log_error(stderr, "caught a std::bad_alloc exception:\n"); log_error(stderr, " %s\n", e.what()); } catch (std::logic_error e) { log_error(stderr, "caught a std::logic_error exception:\n"); log_error(stderr, " %s\n", e.what()); } catch (std::runtime_error e) { log_error(stderr, "caught a std::runtime_error exception:\n"); log_error(stderr, " %s\n", e.what()); } catch (...) { log_error(stderr,"unknown exception caught!\n"); exit(1); } return 0; } int main(int argc, char* argv[]) { crcInit(); if (argc < 2) { log_info(stderr, "please specify input and output file names, e.g:\n"); log_info(stderr, " nvBWT [options] myinput.*.fa output-prefix\n"); log_info(stderr, " options:\n"); log_info(stderr, " -v | --verbosity select verbosity\n"); log_info(stderr, " -m | --max-length clamp input to max_length\n"); log_info(stderr, " -b | --byte-packing output byte packed .pac\n"); log_info(stderr, " -w | --word-packing output word packed .wpac\n"); log_info(stderr, " -c | --crc compute crcs\n"); log_info(stderr, " -d | --device cuda device\n"); exit(0); } const char* file_names[2] = { NULL, NULL }; uint64 max_length = uint64(-1); PacType pac_type = BPAC; bool crc = false; int cuda_device = -1; uint32 n_files = 0; for (int32 i = 1; i < argc; ++i) { const char* arg = argv[i]; if ((strcmp( arg, "-m" ) == 0) || (strcmp( arg, "--max-length" ) == 0)) { max_length = atoi( argv[++i] ); } else if ((strcmp( argv[i], "-v" ) == 0) || (strcmp( argv[i], "-verbosity" ) == 0) || (strcmp( argv[i], "--verbosity" ) == 0)) { set_verbosity( Verbosity( atoi( argv[++i] ) ) ); } else if ((strcmp( arg, "-b" ) == 0) || (strcmp( arg, "--byte-packing" ) == 0)) { pac_type = BPAC; } else if ((strcmp( arg, "-w" ) == 0) || (strcmp( arg, "--word-packing" ) == 0)) { pac_type = WPAC; } else if ((strcmp( arg, "-c" ) == 0) || (strcmp( arg, "--crc" ) == 0)) { crc = true; } else if ((strcmp( arg, "-d" ) == 0) || (strcmp( arg, "--device" ) == 0)) { cuda_device = atoi( argv[++i] ); } else file_names[ n_files++ ] = argv[i]; } const char* input_name = file_names[0]; const char* output_name = file_names[1]; std::string pac_string = std::string( output_name ) + (pac_type == BPAC ? ".pac" : ".wpac"); const char* pac_name = pac_string.c_str(); std::string rpac_string = std::string( output_name ) + (pac_type == BPAC ? ".rpac" : ".rwpac"); const char* rpac_name = rpac_string.c_str(); std::string bwt_string = std::string( output_name ) + ".bwt"; const char* bwt_name = bwt_string.c_str(); std::string rbwt_string = std::string( output_name ) + ".rbwt"; const char* rbwt_name = rbwt_string.c_str(); std::string sa_string = std::string( output_name ) + ".sa"; const char* sa_name = sa_string.c_str(); std::string rsa_string = std::string( output_name ) + ".rsa"; const char* rsa_name = rsa_string.c_str(); log_info(stderr, "max length : %lld\n", max_length); log_info(stderr, "input : \"%s\"\n", input_name); log_info(stderr, "output : \"%s\"\n", output_name); try { int device_count; cudaGetDeviceCount(&device_count); cuda::check_error("cuda-check"); log_verbose(stderr, " cuda devices : %d\n", device_count); // inspect and select cuda devices if (device_count) { if (cuda_device == -1) { int best_device = 0; cudaDeviceProp best_device_prop; cudaGetDeviceProperties( &best_device_prop, best_device ); for (int device = 0; device < device_count; ++device) { cudaDeviceProp device_prop; cudaGetDeviceProperties( &device_prop, device ); log_verbose(stderr, " device %d has compute capability %d.%d\n", device, device_prop.major, device_prop.minor); log_verbose(stderr, " SM count : %u\n", device_prop.multiProcessorCount); log_verbose(stderr, " SM clock rate : %u Mhz\n", device_prop.clockRate / 1000); log_verbose(stderr, " memory clock rate : %.1f Ghz\n", float(device_prop.memoryClockRate) * 1.0e-6f); if (device_prop.major >= best_device_prop.major && device_prop.minor >= best_device_prop.minor) { best_device_prop = device_prop; best_device = device; } } cuda_device = best_device; } log_verbose(stderr, " chosen device %d\n", cuda_device); { cudaDeviceProp device_prop; cudaGetDeviceProperties( &device_prop, cuda_device ); log_verbose(stderr, " device name : %s\n", device_prop.name); log_verbose(stderr, " compute capability : %d.%d\n", device_prop.major, device_prop.minor); } cudaSetDevice( cuda_device ); } size_t free, total; cudaMemGetInfo(&free, &total); NVBIO_CUDA_DEBUG_STATEMENT( log_info(stderr,"device mem : total: %.1f GB, free: %.1f GB\n", float(total)/float(1024*1024*1024), float(free)/float(1024*1024*1024)) ); cuda::check_error("cuda-memory-check"); return build( input_name, output_name, pac_name, rpac_name, bwt_name, rbwt_name, sa_name, rsa_name, max_length, pac_type, crc ); } catch (nvbio::cuda_error e) { log_error(stderr, "caught a nvbio::cuda_error exception:\n"); log_error(stderr, " %s\n", e.what()); return 1; } catch (nvbio::bad_alloc e) { log_error(stderr, "caught a nvbio::bad_alloc exception:\n"); log_error(stderr, " %s\n", e.what()); return 1; } catch (nvbio::logic_error e) { log_error(stderr, "caught a nvbio::logic_error exception:\n"); log_error(stderr, " %s\n", e.what()); return 1; } catch (nvbio::runtime_error e) { log_error(stderr, "caught a nvbio::runtime_error exception:\n"); log_error(stderr, " %s\n", e.what()); return 1; } catch (thrust::system::system_error e) { log_error(stderr, "caught a thrust::system_error exception:\n"); log_error(stderr, " %s\n", e.what()); return 1; } catch (std::bad_alloc e) { log_error(stderr, "caught a std::bad_alloc exception:\n"); log_error(stderr, " %s\n", e.what()); return 1; } catch (std::logic_error e) { log_error(stderr, "caught a std::logic_error exception:\n"); log_error(stderr, " %s\n", e.what()); return 1; } catch (std::runtime_error e) { log_error(stderr, "caught a std::runtime_error exception:\n"); log_error(stderr, " %s\n", e.what()); return 1; } catch (...) { log_error(stderr, "caught an unknown exception!\n"); return 1; } }