123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254 |
- #include <math.h>
- #include <stdlib.h>
- #include "htslib/kfunc.h"
- /* Log gamma function
- * \log{\Gamma(z)}
- * AS245, 2nd algorithm, http://lib.stat.cmu.edu/apstat/245
- */
- double kf_lgamma(double z)
- {
- double x = 0;
- x += 0.1659470187408462e-06 / (z+7);
- x += 0.9934937113930748e-05 / (z+6);
- x -= 0.1385710331296526 / (z+5);
- x += 12.50734324009056 / (z+4);
- x -= 176.6150291498386 / (z+3);
- x += 771.3234287757674 / (z+2);
- x -= 1259.139216722289 / (z+1);
- x += 676.5203681218835 / z;
- x += 0.9999999999995183;
- return log(x) - 5.58106146679532777 - z + (z-0.5) * log(z+6.5);
- }
- /* complementary error function
- * \frac{2}{\sqrt{\pi}} \int_x^{\infty} e^{-t^2} dt
- * AS66, 2nd algorithm, http://lib.stat.cmu.edu/apstat/66
- */
- double kf_erfc(double x)
- {
- const double p0 = 220.2068679123761;
- const double p1 = 221.2135961699311;
- const double p2 = 112.0792914978709;
- const double p3 = 33.912866078383;
- const double p4 = 6.37396220353165;
- const double p5 = .7003830644436881;
- const double p6 = .03526249659989109;
- const double q0 = 440.4137358247522;
- const double q1 = 793.8265125199484;
- const double q2 = 637.3336333788311;
- const double q3 = 296.5642487796737;
- const double q4 = 86.78073220294608;
- const double q5 = 16.06417757920695;
- const double q6 = 1.755667163182642;
- const double q7 = .08838834764831844;
- double expntl, z, p;
- z = fabs(x) * M_SQRT2;
- if (z > 37.) return x > 0.? 0. : 2.;
- expntl = exp(z * z * - .5);
- if (z < 10. / M_SQRT2) // for small z
- p = expntl * ((((((p6 * z + p5) * z + p4) * z + p3) * z + p2) * z + p1) * z + p0)
- / (((((((q7 * z + q6) * z + q5) * z + q4) * z + q3) * z + q2) * z + q1) * z + q0);
- else p = expntl / 2.506628274631001 / (z + 1. / (z + 2. / (z + 3. / (z + 4. / (z + .65)))));
- return x > 0.? 2. * p : 2. * (1. - p);
- }
- /* The following computes regularized incomplete gamma functions.
- * Formulas are taken from Wiki, with additional input from Numerical
- * Recipes in C (for modified Lentz's algorithm) and AS245
- * (http://lib.stat.cmu.edu/apstat/245).
- *
- * A good online calculator is available at:
- *
- * http://www.danielsoper.com/statcalc/calc23.aspx
- *
- * It calculates upper incomplete gamma function, which equals
- * kf_gammaq(s,z)*tgamma(s).
- */
- #define KF_GAMMA_EPS 1e-14
- #define KF_TINY 1e-290
- // regularized lower incomplete gamma function, by series expansion
- static double _kf_gammap(double s, double z)
- {
- double sum, x;
- int k;
- for (k = 1, sum = x = 1.; k < 100; ++k) {
- sum += (x *= z / (s + k));
- if (x / sum < KF_GAMMA_EPS) break;
- }
- return exp(s * log(z) - z - kf_lgamma(s + 1.) + log(sum));
- }
- // regularized upper incomplete gamma function, by continued fraction
- static double _kf_gammaq(double s, double z)
- {
- int j;
- double C, D, f;
- f = 1. + z - s; C = f; D = 0.;
- // Modified Lentz's algorithm for computing continued fraction
- // See Numerical Recipes in C, 2nd edition, section 5.2
- for (j = 1; j < 100; ++j) {
- double a = j * (s - j), b = (j<<1) + 1 + z - s, d;
- D = b + a * D;
- if (D < KF_TINY) D = KF_TINY;
- C = b + a / C;
- if (C < KF_TINY) C = KF_TINY;
- D = 1. / D;
- d = C * D;
- f *= d;
- if (fabs(d - 1.) < KF_GAMMA_EPS) break;
- }
- return exp(s * log(z) - z - kf_lgamma(s) - log(f));
- }
- double kf_gammap(double s, double z)
- {
- return z <= 1. || z < s? _kf_gammap(s, z) : 1. - _kf_gammaq(s, z);
- }
- double kf_gammaq(double s, double z)
- {
- return z <= 1. || z < s? 1. - _kf_gammap(s, z) : _kf_gammaq(s, z);
- }
- /* Regularized incomplete beta function. The method is taken from
- * Numerical Recipe in C, 2nd edition, section 6.4. The following web
- * page calculates the incomplete beta function, which equals
- * kf_betai(a,b,x) * gamma(a) * gamma(b) / gamma(a+b):
- *
- * http://www.danielsoper.com/statcalc/calc36.aspx
- */
- static double kf_betai_aux(double a, double b, double x)
- {
- double C, D, f;
- int j;
- if (x == 0.) return 0.;
- if (x == 1.) return 1.;
- f = 1.; C = f; D = 0.;
- // Modified Lentz's algorithm for computing continued fraction
- for (j = 1; j < 200; ++j) {
- double aa, d;
- int m = j>>1;
- aa = (j&1)? -(a + m) * (a + b + m) * x / ((a + 2*m) * (a + 2*m + 1))
- : m * (b - m) * x / ((a + 2*m - 1) * (a + 2*m));
- D = 1. + aa * D;
- if (D < KF_TINY) D = KF_TINY;
- C = 1. + aa / C;
- if (C < KF_TINY) C = KF_TINY;
- D = 1. / D;
- d = C * D;
- f *= d;
- if (fabs(d - 1.) < KF_GAMMA_EPS) break;
- }
- return exp(kf_lgamma(a+b) - kf_lgamma(a) - kf_lgamma(b) + a * log(x) + b * log(1.-x)) / a / f;
- }
- double kf_betai(double a, double b, double x)
- {
- return x < (a + 1.) / (a + b + 2.)? kf_betai_aux(a, b, x) : 1. - kf_betai_aux(b, a, 1. - x);
- }
- #ifdef KF_MAIN
- #include <stdio.h>
- int main(int argc, char *argv[])
- {
- double x = 5.5, y = 3;
- double a, b;
- printf("erfc(%lg): %lg, %lg\n", x, erfc(x), kf_erfc(x));
- printf("upper-gamma(%lg,%lg): %lg\n", x, y, kf_gammaq(y, x)*tgamma(y));
- a = 2; b = 2; x = 0.5;
- printf("incomplete-beta(%lg,%lg,%lg): %lg\n", a, b, x, kf_betai(a, b, x) / exp(kf_lgamma(a+b) - kf_lgamma(a) - kf_lgamma(b)));
- return 0;
- }
- #endif
- // log\binom{n}{k}
- static double lbinom(int n, int k)
- {
- if (k == 0 || n == k) return 0;
- return lgamma(n+1) - lgamma(k+1) - lgamma(n-k+1);
- }
- // n11 n12 | n1_
- // n21 n22 | n2_
- //-----------+----
- // n_1 n_2 | n
- // hypergeometric distribution
- static double hypergeo(int n11, int n1_, int n_1, int n)
- {
- return exp(lbinom(n1_, n11) + lbinom(n-n1_, n_1-n11) - lbinom(n, n_1));
- }
- typedef struct {
- int n11, n1_, n_1, n;
- double p;
- } hgacc_t;
- // incremental version of hypergenometric distribution
- static double hypergeo_acc(int n11, int n1_, int n_1, int n, hgacc_t *aux)
- {
- if (n1_ || n_1 || n) {
- aux->n11 = n11; aux->n1_ = n1_; aux->n_1 = n_1; aux->n = n;
- } else { // then only n11 changed; the rest fixed
- if (n11%11 && n11 + aux->n - aux->n1_ - aux->n_1) {
- if (n11 == aux->n11 + 1) { // incremental
- aux->p *= (double)(aux->n1_ - aux->n11) / n11
- * (aux->n_1 - aux->n11) / (n11 + aux->n - aux->n1_ - aux->n_1);
- aux->n11 = n11;
- return aux->p;
- }
- if (n11 == aux->n11 - 1) { // incremental
- aux->p *= (double)aux->n11 / (aux->n1_ - n11)
- * (aux->n11 + aux->n - aux->n1_ - aux->n_1) / (aux->n_1 - n11);
- aux->n11 = n11;
- return aux->p;
- }
- }
- aux->n11 = n11;
- }
- aux->p = hypergeo(aux->n11, aux->n1_, aux->n_1, aux->n);
- return aux->p;
- }
- double kt_fisher_exact(int n11, int n12, int n21, int n22, double *_left, double *_right, double *two)
- {
- int i, j, max, min;
- double p, q, left, right;
- hgacc_t aux;
- int n1_, n_1, n;
- n1_ = n11 + n12; n_1 = n11 + n21; n = n11 + n12 + n21 + n22; // calculate n1_, n_1 and n
- max = (n_1 < n1_) ? n_1 : n1_; // max n11, for right tail
- min = n1_ + n_1 - n; // not sure why n11-n22 is used instead of min(n_1,n1_)
- if (min < 0) min = 0; // min n11, for left tail
- *two = *_left = *_right = 1.;
- if (min == max) return 1.; // no need to do test
- q = hypergeo_acc(n11, n1_, n_1, n, &aux); // the probability of the current table
- // left tail
- p = hypergeo_acc(min, 0, 0, 0, &aux);
- for (left = 0., i = min + 1; p < 0.99999999 * q && i<=max; ++i) // loop until underflow
- left += p, p = hypergeo_acc(i, 0, 0, 0, &aux);
- --i;
- if (p < 1.00000001 * q) left += p;
- else --i;
- // right tail
- p = hypergeo_acc(max, 0, 0, 0, &aux);
- for (right = 0., j = max - 1; p < 0.99999999 * q && j>=0; --j) // loop until underflow
- right += p, p = hypergeo_acc(j, 0, 0, 0, &aux);
- ++j;
- if (p < 1.00000001 * q) right += p;
- else ++j;
- // two-tail
- *two = left + right;
- if (*two > 1.) *two = 1.;
- // adjust left and right
- if (abs(i - n11) < abs(j - n11)) right = 1. - left + q;
- else left = 1.0 - right + q;
- *_left = left; *_right = right;
- return q;
- }
|