xxhash.c 26 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935
  1. /*
  2. xxHash - Fast Hash algorithm
  3. Copyright (C) 2012-2015, Yann Collet
  4. BSD 2-Clause License (http://www.opensource.org/licenses/bsd-license.php)
  5. Redistribution and use in source and binary forms, with or without
  6. modification, are permitted provided that the following conditions are
  7. met:
  8. * Redistributions of source code must retain the above copyright
  9. notice, this list of conditions and the following disclaimer.
  10. * Redistributions in binary form must reproduce the above
  11. copyright notice, this list of conditions and the following disclaimer
  12. in the documentation and/or other materials provided with the
  13. distribution.
  14. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
  15. "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
  16. LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
  17. A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
  18. OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
  19. SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
  20. LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
  21. DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
  22. THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
  23. (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
  24. OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
  25. You can contact the author at :
  26. - xxHash source repository : http://code.google.com/p/xxhash/
  27. - xxHash source mirror : https://github.com/Cyan4973/xxHash
  28. - public discussion board : https://groups.google.com/forum/#!forum/lz4c
  29. */
  30. /**************************************
  31. * Tuning parameters
  32. ***************************************/
  33. /* Unaligned memory access is automatically enabled for "common" CPU, such as x86.
  34. * For others CPU, the compiler will be more cautious, and insert extra code to ensure aligned access is respected.
  35. * If you know your target CPU supports unaligned memory access, you want to force this option manually to improve performance.
  36. * You can also enable this parameter if you know your input data will always be aligned (boundaries of 4, for U32).
  37. */
  38. #if defined(__ARM_FEATURE_UNALIGNED) || defined(__i386) || defined(_M_IX86) || defined(__x86_64__) || defined(_M_X64)
  39. # define XXH_USE_UNALIGNED_ACCESS 1
  40. #endif
  41. /* XXH_ACCEPT_NULL_INPUT_POINTER :
  42. * If the input pointer is a null pointer, xxHash default behavior is to trigger a memory access error, since it is a bad pointer.
  43. * When this option is enabled, xxHash output for null input pointers will be the same as a null-length input.
  44. * By default, this option is disabled. To enable it, uncomment below define :
  45. */
  46. /* #define XXH_ACCEPT_NULL_INPUT_POINTER 1 */
  47. /* XXH_FORCE_NATIVE_FORMAT :
  48. * By default, xxHash library provides endian-independant Hash values, based on little-endian convention.
  49. * Results are therefore identical for little-endian and big-endian CPU.
  50. * This comes at a performance cost for big-endian CPU, since some swapping is required to emulate little-endian format.
  51. * Should endian-independance be of no importance for your application, you may set the #define below to 1.
  52. * It will improve speed for Big-endian CPU.
  53. * This option has no impact on Little_Endian CPU.
  54. */
  55. #define XXH_FORCE_NATIVE_FORMAT 0
  56. /**************************************
  57. * Compiler Specific Options
  58. ***************************************/
  59. #ifdef _MSC_VER /* Visual Studio */
  60. # pragma warning(disable : 4127) /* disable: C4127: conditional expression is constant */
  61. # define FORCE_INLINE static __forceinline
  62. #else
  63. # if defined (__STDC_VERSION__) && __STDC_VERSION__ >= 199901L /* C99 */
  64. # ifdef __GNUC__
  65. # define FORCE_INLINE static inline __attribute__((always_inline))
  66. # else
  67. # define FORCE_INLINE static inline
  68. # endif
  69. # else
  70. # define FORCE_INLINE static
  71. # endif /* __STDC_VERSION__ */
  72. #endif
  73. /**************************************
  74. * Includes & Memory related functions
  75. ***************************************/
  76. #include "xxhash.h"
  77. /* Modify the local functions below should you wish to use some other memory routines */
  78. /* for malloc(), free() */
  79. #include <stdlib.h>
  80. static void* XXH_malloc(size_t s) { return malloc(s); }
  81. static void XXH_free (void* p) { free(p); }
  82. /* for memcpy() */
  83. #include <string.h>
  84. static void* XXH_memcpy(void* dest, const void* src, size_t size)
  85. {
  86. return memcpy(dest,src,size);
  87. }
  88. /**************************************
  89. * Basic Types
  90. ***************************************/
  91. #if defined (__STDC_VERSION__) && __STDC_VERSION__ >= 199901L /* C99 */
  92. # include <stdint.h>
  93. typedef uint8_t BYTE;
  94. typedef uint16_t U16;
  95. typedef uint32_t U32;
  96. typedef int32_t S32;
  97. typedef uint64_t U64;
  98. #else
  99. typedef unsigned char BYTE;
  100. typedef unsigned short U16;
  101. typedef unsigned int U32;
  102. typedef signed int S32;
  103. typedef unsigned long long U64;
  104. #endif
  105. #if defined(__GNUC__) && !defined(XXH_USE_UNALIGNED_ACCESS)
  106. # define _PACKED __attribute__ ((packed))
  107. #else
  108. # define _PACKED
  109. #endif
  110. #if !defined(XXH_USE_UNALIGNED_ACCESS) && !defined(__GNUC__)
  111. # ifdef __IBMC__
  112. # pragma pack(1)
  113. # else
  114. # pragma pack(push, 1)
  115. # endif
  116. #endif
  117. typedef struct _U32_S
  118. {
  119. U32 v;
  120. } _PACKED U32_S;
  121. typedef struct _U64_S
  122. {
  123. U64 v;
  124. } _PACKED U64_S;
  125. #if !defined(XXH_USE_UNALIGNED_ACCESS) && !defined(__GNUC__)
  126. # pragma pack(pop)
  127. #endif
  128. #define A32(x) (((U32_S *)(x))->v)
  129. #define A64(x) (((U64_S *)(x))->v)
  130. /*****************************************
  131. * Compiler-specific Functions and Macros
  132. ******************************************/
  133. #define GCC_VERSION (__GNUC__ * 100 + __GNUC_MINOR__)
  134. /* Note : although _rotl exists for minGW (GCC under windows), performance seems poor */
  135. #if defined(_MSC_VER)
  136. # define XXH_rotl32(x,r) _rotl(x,r)
  137. # define XXH_rotl64(x,r) _rotl64(x,r)
  138. #else
  139. # define XXH_rotl32(x,r) ((x << r) | (x >> (32 - r)))
  140. # define XXH_rotl64(x,r) ((x << r) | (x >> (64 - r)))
  141. #endif
  142. #if defined(_MSC_VER) /* Visual Studio */
  143. # define XXH_swap32 _byteswap_ulong
  144. # define XXH_swap64 _byteswap_uint64
  145. #elif GCC_VERSION >= 403
  146. # define XXH_swap32 __builtin_bswap32
  147. # define XXH_swap64 __builtin_bswap64
  148. #else
  149. static U32 XXH_swap32 (U32 x)
  150. {
  151. return ((x << 24) & 0xff000000 ) |
  152. ((x << 8) & 0x00ff0000 ) |
  153. ((x >> 8) & 0x0000ff00 ) |
  154. ((x >> 24) & 0x000000ff );
  155. }
  156. static U64 XXH_swap64 (U64 x)
  157. {
  158. return ((x << 56) & 0xff00000000000000ULL) |
  159. ((x << 40) & 0x00ff000000000000ULL) |
  160. ((x << 24) & 0x0000ff0000000000ULL) |
  161. ((x << 8) & 0x000000ff00000000ULL) |
  162. ((x >> 8) & 0x00000000ff000000ULL) |
  163. ((x >> 24) & 0x0000000000ff0000ULL) |
  164. ((x >> 40) & 0x000000000000ff00ULL) |
  165. ((x >> 56) & 0x00000000000000ffULL);
  166. }
  167. #endif
  168. /**************************************
  169. * Constants
  170. ***************************************/
  171. #define PRIME32_1 2654435761U
  172. #define PRIME32_2 2246822519U
  173. #define PRIME32_3 3266489917U
  174. #define PRIME32_4 668265263U
  175. #define PRIME32_5 374761393U
  176. #define PRIME64_1 11400714785074694791ULL
  177. #define PRIME64_2 14029467366897019727ULL
  178. #define PRIME64_3 1609587929392839161ULL
  179. #define PRIME64_4 9650029242287828579ULL
  180. #define PRIME64_5 2870177450012600261ULL
  181. /***************************************
  182. * Architecture Macros
  183. ****************************************/
  184. typedef enum { XXH_bigEndian=0, XXH_littleEndian=1 } XXH_endianess;
  185. #ifndef XXH_CPU_LITTLE_ENDIAN /* XXH_CPU_LITTLE_ENDIAN can be defined externally, for example using a compiler switch */
  186. static const int one = 1;
  187. # define XXH_CPU_LITTLE_ENDIAN (*(char*)(&one))
  188. #endif
  189. /**************************************
  190. * Macros
  191. ***************************************/
  192. #define XXH_STATIC_ASSERT(c) { enum { XXH_static_assert = 1/(!!(c)) }; } /* use only *after* variable declarations */
  193. /****************************
  194. * Memory reads
  195. *****************************/
  196. typedef enum { XXH_aligned, XXH_unaligned } XXH_alignment;
  197. FORCE_INLINE U32 XXH_readLE32_align(const void* ptr, XXH_endianess endian, XXH_alignment align)
  198. {
  199. if (align==XXH_unaligned)
  200. return endian==XXH_littleEndian ? A32(ptr) : XXH_swap32(A32(ptr));
  201. else
  202. return endian==XXH_littleEndian ? *(U32*)ptr : XXH_swap32(*(U32*)ptr);
  203. }
  204. FORCE_INLINE U32 XXH_readLE32(const void* ptr, XXH_endianess endian)
  205. {
  206. return XXH_readLE32_align(ptr, endian, XXH_unaligned);
  207. }
  208. FORCE_INLINE U64 XXH_readLE64_align(const void* ptr, XXH_endianess endian, XXH_alignment align)
  209. {
  210. if (align==XXH_unaligned)
  211. return endian==XXH_littleEndian ? A64(ptr) : XXH_swap64(A64(ptr));
  212. else
  213. return endian==XXH_littleEndian ? *(U64*)ptr : XXH_swap64(*(U64*)ptr);
  214. }
  215. FORCE_INLINE U64 XXH_readLE64(const void* ptr, XXH_endianess endian)
  216. {
  217. return XXH_readLE64_align(ptr, endian, XXH_unaligned);
  218. }
  219. /****************************
  220. * Simple Hash Functions
  221. *****************************/
  222. FORCE_INLINE U32 XXH32_endian_align(const void* input, size_t len, U32 seed, XXH_endianess endian, XXH_alignment align)
  223. {
  224. const BYTE* p = (const BYTE*)input;
  225. const BYTE* bEnd = p + len;
  226. U32 h32;
  227. #define XXH_get32bits(p) XXH_readLE32_align(p, endian, align)
  228. #ifdef XXH_ACCEPT_NULL_INPUT_POINTER
  229. if (p==NULL)
  230. {
  231. len=0;
  232. bEnd=p=(const BYTE*)(size_t)16;
  233. }
  234. #endif
  235. if (len>=16)
  236. {
  237. const BYTE* const limit = bEnd - 16;
  238. U32 v1 = seed + PRIME32_1 + PRIME32_2;
  239. U32 v2 = seed + PRIME32_2;
  240. U32 v3 = seed + 0;
  241. U32 v4 = seed - PRIME32_1;
  242. do
  243. {
  244. v1 += XXH_get32bits(p) * PRIME32_2;
  245. v1 = XXH_rotl32(v1, 13);
  246. v1 *= PRIME32_1;
  247. p+=4;
  248. v2 += XXH_get32bits(p) * PRIME32_2;
  249. v2 = XXH_rotl32(v2, 13);
  250. v2 *= PRIME32_1;
  251. p+=4;
  252. v3 += XXH_get32bits(p) * PRIME32_2;
  253. v3 = XXH_rotl32(v3, 13);
  254. v3 *= PRIME32_1;
  255. p+=4;
  256. v4 += XXH_get32bits(p) * PRIME32_2;
  257. v4 = XXH_rotl32(v4, 13);
  258. v4 *= PRIME32_1;
  259. p+=4;
  260. }
  261. while (p<=limit);
  262. h32 = XXH_rotl32(v1, 1) + XXH_rotl32(v2, 7) + XXH_rotl32(v3, 12) + XXH_rotl32(v4, 18);
  263. }
  264. else
  265. {
  266. h32 = seed + PRIME32_5;
  267. }
  268. h32 += (U32) len;
  269. while (p+4<=bEnd)
  270. {
  271. h32 += XXH_get32bits(p) * PRIME32_3;
  272. h32 = XXH_rotl32(h32, 17) * PRIME32_4 ;
  273. p+=4;
  274. }
  275. while (p<bEnd)
  276. {
  277. h32 += (*p) * PRIME32_5;
  278. h32 = XXH_rotl32(h32, 11) * PRIME32_1 ;
  279. p++;
  280. }
  281. h32 ^= h32 >> 15;
  282. h32 *= PRIME32_2;
  283. h32 ^= h32 >> 13;
  284. h32 *= PRIME32_3;
  285. h32 ^= h32 >> 16;
  286. return h32;
  287. }
  288. unsigned int XXH32 (const void* input, size_t len, unsigned seed)
  289. {
  290. #if 0
  291. /* Simple version, good for code maintenance, but unfortunately slow for small inputs */
  292. XXH32_state_t state;
  293. XXH32_reset(&state, seed);
  294. XXH32_update(&state, input, len);
  295. return XXH32_digest(&state);
  296. #else
  297. XXH_endianess endian_detected = (XXH_endianess)XXH_CPU_LITTLE_ENDIAN;
  298. # if !defined(XXH_USE_UNALIGNED_ACCESS)
  299. if ((((size_t)input) & 3) == 0) /* Input is aligned, let's leverage the speed advantage */
  300. {
  301. if ((endian_detected==XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT)
  302. return XXH32_endian_align(input, len, seed, XXH_littleEndian, XXH_aligned);
  303. else
  304. return XXH32_endian_align(input, len, seed, XXH_bigEndian, XXH_aligned);
  305. }
  306. # endif
  307. if ((endian_detected==XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT)
  308. return XXH32_endian_align(input, len, seed, XXH_littleEndian, XXH_unaligned);
  309. else
  310. return XXH32_endian_align(input, len, seed, XXH_bigEndian, XXH_unaligned);
  311. #endif
  312. }
  313. FORCE_INLINE U64 XXH64_endian_align(const void* input, size_t len, U64 seed, XXH_endianess endian, XXH_alignment align)
  314. {
  315. const BYTE* p = (const BYTE*)input;
  316. const BYTE* bEnd = p + len;
  317. U64 h64;
  318. #define XXH_get64bits(p) XXH_readLE64_align(p, endian, align)
  319. #ifdef XXH_ACCEPT_NULL_INPUT_POINTER
  320. if (p==NULL)
  321. {
  322. len=0;
  323. bEnd=p=(const BYTE*)(size_t)32;
  324. }
  325. #endif
  326. if (len>=32)
  327. {
  328. const BYTE* const limit = bEnd - 32;
  329. U64 v1 = seed + PRIME64_1 + PRIME64_2;
  330. U64 v2 = seed + PRIME64_2;
  331. U64 v3 = seed + 0;
  332. U64 v4 = seed - PRIME64_1;
  333. do
  334. {
  335. v1 += XXH_get64bits(p) * PRIME64_2;
  336. p+=8;
  337. v1 = XXH_rotl64(v1, 31);
  338. v1 *= PRIME64_1;
  339. v2 += XXH_get64bits(p) * PRIME64_2;
  340. p+=8;
  341. v2 = XXH_rotl64(v2, 31);
  342. v2 *= PRIME64_1;
  343. v3 += XXH_get64bits(p) * PRIME64_2;
  344. p+=8;
  345. v3 = XXH_rotl64(v3, 31);
  346. v3 *= PRIME64_1;
  347. v4 += XXH_get64bits(p) * PRIME64_2;
  348. p+=8;
  349. v4 = XXH_rotl64(v4, 31);
  350. v4 *= PRIME64_1;
  351. }
  352. while (p<=limit);
  353. h64 = XXH_rotl64(v1, 1) + XXH_rotl64(v2, 7) + XXH_rotl64(v3, 12) + XXH_rotl64(v4, 18);
  354. v1 *= PRIME64_2;
  355. v1 = XXH_rotl64(v1, 31);
  356. v1 *= PRIME64_1;
  357. h64 ^= v1;
  358. h64 = h64 * PRIME64_1 + PRIME64_4;
  359. v2 *= PRIME64_2;
  360. v2 = XXH_rotl64(v2, 31);
  361. v2 *= PRIME64_1;
  362. h64 ^= v2;
  363. h64 = h64 * PRIME64_1 + PRIME64_4;
  364. v3 *= PRIME64_2;
  365. v3 = XXH_rotl64(v3, 31);
  366. v3 *= PRIME64_1;
  367. h64 ^= v3;
  368. h64 = h64 * PRIME64_1 + PRIME64_4;
  369. v4 *= PRIME64_2;
  370. v4 = XXH_rotl64(v4, 31);
  371. v4 *= PRIME64_1;
  372. h64 ^= v4;
  373. h64 = h64 * PRIME64_1 + PRIME64_4;
  374. }
  375. else
  376. {
  377. h64 = seed + PRIME64_5;
  378. }
  379. h64 += (U64) len;
  380. while (p+8<=bEnd)
  381. {
  382. U64 k1 = XXH_get64bits(p);
  383. k1 *= PRIME64_2;
  384. k1 = XXH_rotl64(k1,31);
  385. k1 *= PRIME64_1;
  386. h64 ^= k1;
  387. h64 = XXH_rotl64(h64,27) * PRIME64_1 + PRIME64_4;
  388. p+=8;
  389. }
  390. if (p+4<=bEnd)
  391. {
  392. h64 ^= (U64)(XXH_get32bits(p)) * PRIME64_1;
  393. h64 = XXH_rotl64(h64, 23) * PRIME64_2 + PRIME64_3;
  394. p+=4;
  395. }
  396. while (p<bEnd)
  397. {
  398. h64 ^= (*p) * PRIME64_5;
  399. h64 = XXH_rotl64(h64, 11) * PRIME64_1;
  400. p++;
  401. }
  402. h64 ^= h64 >> 33;
  403. h64 *= PRIME64_2;
  404. h64 ^= h64 >> 29;
  405. h64 *= PRIME64_3;
  406. h64 ^= h64 >> 32;
  407. return h64;
  408. }
  409. unsigned long long XXH64 (const void* input, size_t len, unsigned long long seed)
  410. {
  411. #if 0
  412. /* Simple version, good for code maintenance, but unfortunately slow for small inputs */
  413. XXH64_state_t state;
  414. XXH64_reset(&state, seed);
  415. XXH64_update(&state, input, len);
  416. return XXH64_digest(&state);
  417. #else
  418. XXH_endianess endian_detected = (XXH_endianess)XXH_CPU_LITTLE_ENDIAN;
  419. # if !defined(XXH_USE_UNALIGNED_ACCESS)
  420. if ((((size_t)input) & 7)==0) /* Input is aligned, let's leverage the speed advantage */
  421. {
  422. if ((endian_detected==XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT)
  423. return XXH64_endian_align(input, len, seed, XXH_littleEndian, XXH_aligned);
  424. else
  425. return XXH64_endian_align(input, len, seed, XXH_bigEndian, XXH_aligned);
  426. }
  427. # endif
  428. if ((endian_detected==XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT)
  429. return XXH64_endian_align(input, len, seed, XXH_littleEndian, XXH_unaligned);
  430. else
  431. return XXH64_endian_align(input, len, seed, XXH_bigEndian, XXH_unaligned);
  432. #endif
  433. }
  434. /****************************************************
  435. * Advanced Hash Functions
  436. ****************************************************/
  437. /*** Allocation ***/
  438. typedef struct
  439. {
  440. U64 total_len;
  441. U32 seed;
  442. U32 v1;
  443. U32 v2;
  444. U32 v3;
  445. U32 v4;
  446. U32 mem32[4]; /* defined as U32 for alignment */
  447. U32 memsize;
  448. } XXH_istate32_t;
  449. typedef struct
  450. {
  451. U64 total_len;
  452. U64 seed;
  453. U64 v1;
  454. U64 v2;
  455. U64 v3;
  456. U64 v4;
  457. U64 mem64[4]; /* defined as U64 for alignment */
  458. U32 memsize;
  459. } XXH_istate64_t;
  460. XXH32_state_t* XXH32_createState(void)
  461. {
  462. XXH_STATIC_ASSERT(sizeof(XXH32_state_t) >= sizeof(XXH_istate32_t)); /* A compilation error here means XXH32_state_t is not large enough */
  463. return (XXH32_state_t*)XXH_malloc(sizeof(XXH32_state_t));
  464. }
  465. XXH_errorcode XXH32_freeState(XXH32_state_t* statePtr)
  466. {
  467. XXH_free(statePtr);
  468. return XXH_OK;
  469. }
  470. XXH64_state_t* XXH64_createState(void)
  471. {
  472. XXH_STATIC_ASSERT(sizeof(XXH64_state_t) >= sizeof(XXH_istate64_t)); /* A compilation error here means XXH64_state_t is not large enough */
  473. return (XXH64_state_t*)XXH_malloc(sizeof(XXH64_state_t));
  474. }
  475. XXH_errorcode XXH64_freeState(XXH64_state_t* statePtr)
  476. {
  477. XXH_free(statePtr);
  478. return XXH_OK;
  479. }
  480. /*** Hash feed ***/
  481. XXH_errorcode XXH32_reset(XXH32_state_t* state_in, U32 seed)
  482. {
  483. XXH_istate32_t* state = (XXH_istate32_t*) state_in;
  484. state->seed = seed;
  485. state->v1 = seed + PRIME32_1 + PRIME32_2;
  486. state->v2 = seed + PRIME32_2;
  487. state->v3 = seed + 0;
  488. state->v4 = seed - PRIME32_1;
  489. state->total_len = 0;
  490. state->memsize = 0;
  491. return XXH_OK;
  492. }
  493. XXH_errorcode XXH64_reset(XXH64_state_t* state_in, unsigned long long seed)
  494. {
  495. XXH_istate64_t* state = (XXH_istate64_t*) state_in;
  496. state->seed = seed;
  497. state->v1 = seed + PRIME64_1 + PRIME64_2;
  498. state->v2 = seed + PRIME64_2;
  499. state->v3 = seed + 0;
  500. state->v4 = seed - PRIME64_1;
  501. state->total_len = 0;
  502. state->memsize = 0;
  503. return XXH_OK;
  504. }
  505. FORCE_INLINE XXH_errorcode XXH32_update_endian (XXH32_state_t* state_in, const void* input, size_t len, XXH_endianess endian)
  506. {
  507. XXH_istate32_t* state = (XXH_istate32_t *) state_in;
  508. const BYTE* p = (const BYTE*)input;
  509. const BYTE* const bEnd = p + len;
  510. #ifdef XXH_ACCEPT_NULL_INPUT_POINTER
  511. if (input==NULL) return XXH_ERROR;
  512. #endif
  513. state->total_len += len;
  514. if (state->memsize + len < 16) /* fill in tmp buffer */
  515. {
  516. XXH_memcpy((BYTE*)(state->mem32) + state->memsize, input, len);
  517. state->memsize += (U32)len;
  518. return XXH_OK;
  519. }
  520. if (state->memsize) /* some data left from previous update */
  521. {
  522. XXH_memcpy((BYTE*)(state->mem32) + state->memsize, input, 16-state->memsize);
  523. {
  524. const U32* p32 = state->mem32;
  525. state->v1 += XXH_readLE32(p32, endian) * PRIME32_2;
  526. state->v1 = XXH_rotl32(state->v1, 13);
  527. state->v1 *= PRIME32_1;
  528. p32++;
  529. state->v2 += XXH_readLE32(p32, endian) * PRIME32_2;
  530. state->v2 = XXH_rotl32(state->v2, 13);
  531. state->v2 *= PRIME32_1;
  532. p32++;
  533. state->v3 += XXH_readLE32(p32, endian) * PRIME32_2;
  534. state->v3 = XXH_rotl32(state->v3, 13);
  535. state->v3 *= PRIME32_1;
  536. p32++;
  537. state->v4 += XXH_readLE32(p32, endian) * PRIME32_2;
  538. state->v4 = XXH_rotl32(state->v4, 13);
  539. state->v4 *= PRIME32_1;
  540. p32++;
  541. }
  542. p += 16-state->memsize;
  543. state->memsize = 0;
  544. }
  545. if (p <= bEnd-16)
  546. {
  547. const BYTE* const limit = bEnd - 16;
  548. U32 v1 = state->v1;
  549. U32 v2 = state->v2;
  550. U32 v3 = state->v3;
  551. U32 v4 = state->v4;
  552. do
  553. {
  554. v1 += XXH_readLE32(p, endian) * PRIME32_2;
  555. v1 = XXH_rotl32(v1, 13);
  556. v1 *= PRIME32_1;
  557. p+=4;
  558. v2 += XXH_readLE32(p, endian) * PRIME32_2;
  559. v2 = XXH_rotl32(v2, 13);
  560. v2 *= PRIME32_1;
  561. p+=4;
  562. v3 += XXH_readLE32(p, endian) * PRIME32_2;
  563. v3 = XXH_rotl32(v3, 13);
  564. v3 *= PRIME32_1;
  565. p+=4;
  566. v4 += XXH_readLE32(p, endian) * PRIME32_2;
  567. v4 = XXH_rotl32(v4, 13);
  568. v4 *= PRIME32_1;
  569. p+=4;
  570. }
  571. while (p<=limit);
  572. state->v1 = v1;
  573. state->v2 = v2;
  574. state->v3 = v3;
  575. state->v4 = v4;
  576. }
  577. if (p < bEnd)
  578. {
  579. XXH_memcpy(state->mem32, p, bEnd-p);
  580. state->memsize = (int)(bEnd-p);
  581. }
  582. return XXH_OK;
  583. }
  584. XXH_errorcode XXH32_update (XXH32_state_t* state_in, const void* input, size_t len)
  585. {
  586. XXH_endianess endian_detected = (XXH_endianess)XXH_CPU_LITTLE_ENDIAN;
  587. if ((endian_detected==XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT)
  588. return XXH32_update_endian(state_in, input, len, XXH_littleEndian);
  589. else
  590. return XXH32_update_endian(state_in, input, len, XXH_bigEndian);
  591. }
  592. FORCE_INLINE U32 XXH32_digest_endian (const XXH32_state_t* state_in, XXH_endianess endian)
  593. {
  594. XXH_istate32_t* state = (XXH_istate32_t*) state_in;
  595. const BYTE * p = (const BYTE*)state->mem32;
  596. BYTE* bEnd = (BYTE*)(state->mem32) + state->memsize;
  597. U32 h32;
  598. if (state->total_len >= 16)
  599. {
  600. h32 = XXH_rotl32(state->v1, 1) + XXH_rotl32(state->v2, 7) + XXH_rotl32(state->v3, 12) + XXH_rotl32(state->v4, 18);
  601. }
  602. else
  603. {
  604. h32 = state->seed + PRIME32_5;
  605. }
  606. h32 += (U32) state->total_len;
  607. while (p+4<=bEnd)
  608. {
  609. h32 += XXH_readLE32(p, endian) * PRIME32_3;
  610. h32 = XXH_rotl32(h32, 17) * PRIME32_4;
  611. p+=4;
  612. }
  613. while (p<bEnd)
  614. {
  615. h32 += (*p) * PRIME32_5;
  616. h32 = XXH_rotl32(h32, 11) * PRIME32_1;
  617. p++;
  618. }
  619. h32 ^= h32 >> 15;
  620. h32 *= PRIME32_2;
  621. h32 ^= h32 >> 13;
  622. h32 *= PRIME32_3;
  623. h32 ^= h32 >> 16;
  624. return h32;
  625. }
  626. U32 XXH32_digest (const XXH32_state_t* state_in)
  627. {
  628. XXH_endianess endian_detected = (XXH_endianess)XXH_CPU_LITTLE_ENDIAN;
  629. if ((endian_detected==XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT)
  630. return XXH32_digest_endian(state_in, XXH_littleEndian);
  631. else
  632. return XXH32_digest_endian(state_in, XXH_bigEndian);
  633. }
  634. FORCE_INLINE XXH_errorcode XXH64_update_endian (XXH64_state_t* state_in, const void* input, size_t len, XXH_endianess endian)
  635. {
  636. XXH_istate64_t * state = (XXH_istate64_t *) state_in;
  637. const BYTE* p = (const BYTE*)input;
  638. const BYTE* const bEnd = p + len;
  639. #ifdef XXH_ACCEPT_NULL_INPUT_POINTER
  640. if (input==NULL) return XXH_ERROR;
  641. #endif
  642. state->total_len += len;
  643. if (state->memsize + len < 32) /* fill in tmp buffer */
  644. {
  645. XXH_memcpy(((BYTE*)state->mem64) + state->memsize, input, len);
  646. state->memsize += (U32)len;
  647. return XXH_OK;
  648. }
  649. if (state->memsize) /* some data left from previous update */
  650. {
  651. XXH_memcpy(((BYTE*)state->mem64) + state->memsize, input, 32-state->memsize);
  652. {
  653. const U64* p64 = state->mem64;
  654. state->v1 += XXH_readLE64(p64, endian) * PRIME64_2;
  655. state->v1 = XXH_rotl64(state->v1, 31);
  656. state->v1 *= PRIME64_1;
  657. p64++;
  658. state->v2 += XXH_readLE64(p64, endian) * PRIME64_2;
  659. state->v2 = XXH_rotl64(state->v2, 31);
  660. state->v2 *= PRIME64_1;
  661. p64++;
  662. state->v3 += XXH_readLE64(p64, endian) * PRIME64_2;
  663. state->v3 = XXH_rotl64(state->v3, 31);
  664. state->v3 *= PRIME64_1;
  665. p64++;
  666. state->v4 += XXH_readLE64(p64, endian) * PRIME64_2;
  667. state->v4 = XXH_rotl64(state->v4, 31);
  668. state->v4 *= PRIME64_1;
  669. p64++;
  670. }
  671. p += 32-state->memsize;
  672. state->memsize = 0;
  673. }
  674. if (p+32 <= bEnd)
  675. {
  676. const BYTE* const limit = bEnd - 32;
  677. U64 v1 = state->v1;
  678. U64 v2 = state->v2;
  679. U64 v3 = state->v3;
  680. U64 v4 = state->v4;
  681. do
  682. {
  683. v1 += XXH_readLE64(p, endian) * PRIME64_2;
  684. v1 = XXH_rotl64(v1, 31);
  685. v1 *= PRIME64_1;
  686. p+=8;
  687. v2 += XXH_readLE64(p, endian) * PRIME64_2;
  688. v2 = XXH_rotl64(v2, 31);
  689. v2 *= PRIME64_1;
  690. p+=8;
  691. v3 += XXH_readLE64(p, endian) * PRIME64_2;
  692. v3 = XXH_rotl64(v3, 31);
  693. v3 *= PRIME64_1;
  694. p+=8;
  695. v4 += XXH_readLE64(p, endian) * PRIME64_2;
  696. v4 = XXH_rotl64(v4, 31);
  697. v4 *= PRIME64_1;
  698. p+=8;
  699. }
  700. while (p<=limit);
  701. state->v1 = v1;
  702. state->v2 = v2;
  703. state->v3 = v3;
  704. state->v4 = v4;
  705. }
  706. if (p < bEnd)
  707. {
  708. XXH_memcpy(state->mem64, p, bEnd-p);
  709. state->memsize = (int)(bEnd-p);
  710. }
  711. return XXH_OK;
  712. }
  713. XXH_errorcode XXH64_update (XXH64_state_t* state_in, const void* input, size_t len)
  714. {
  715. XXH_endianess endian_detected = (XXH_endianess)XXH_CPU_LITTLE_ENDIAN;
  716. if ((endian_detected==XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT)
  717. return XXH64_update_endian(state_in, input, len, XXH_littleEndian);
  718. else
  719. return XXH64_update_endian(state_in, input, len, XXH_bigEndian);
  720. }
  721. FORCE_INLINE U64 XXH64_digest_endian (const XXH64_state_t* state_in, XXH_endianess endian)
  722. {
  723. XXH_istate64_t * state = (XXH_istate64_t *) state_in;
  724. const BYTE * p = (const BYTE*)state->mem64;
  725. BYTE* bEnd = (BYTE*)state->mem64 + state->memsize;
  726. U64 h64;
  727. if (state->total_len >= 32)
  728. {
  729. U64 v1 = state->v1;
  730. U64 v2 = state->v2;
  731. U64 v3 = state->v3;
  732. U64 v4 = state->v4;
  733. h64 = XXH_rotl64(v1, 1) + XXH_rotl64(v2, 7) + XXH_rotl64(v3, 12) + XXH_rotl64(v4, 18);
  734. v1 *= PRIME64_2;
  735. v1 = XXH_rotl64(v1, 31);
  736. v1 *= PRIME64_1;
  737. h64 ^= v1;
  738. h64 = h64*PRIME64_1 + PRIME64_4;
  739. v2 *= PRIME64_2;
  740. v2 = XXH_rotl64(v2, 31);
  741. v2 *= PRIME64_1;
  742. h64 ^= v2;
  743. h64 = h64*PRIME64_1 + PRIME64_4;
  744. v3 *= PRIME64_2;
  745. v3 = XXH_rotl64(v3, 31);
  746. v3 *= PRIME64_1;
  747. h64 ^= v3;
  748. h64 = h64*PRIME64_1 + PRIME64_4;
  749. v4 *= PRIME64_2;
  750. v4 = XXH_rotl64(v4, 31);
  751. v4 *= PRIME64_1;
  752. h64 ^= v4;
  753. h64 = h64*PRIME64_1 + PRIME64_4;
  754. }
  755. else
  756. {
  757. h64 = state->seed + PRIME64_5;
  758. }
  759. h64 += (U64) state->total_len;
  760. while (p+8<=bEnd)
  761. {
  762. U64 k1 = XXH_readLE64(p, endian);
  763. k1 *= PRIME64_2;
  764. k1 = XXH_rotl64(k1,31);
  765. k1 *= PRIME64_1;
  766. h64 ^= k1;
  767. h64 = XXH_rotl64(h64,27) * PRIME64_1 + PRIME64_4;
  768. p+=8;
  769. }
  770. if (p+4<=bEnd)
  771. {
  772. h64 ^= (U64)(XXH_readLE32(p, endian)) * PRIME64_1;
  773. h64 = XXH_rotl64(h64, 23) * PRIME64_2 + PRIME64_3;
  774. p+=4;
  775. }
  776. while (p<bEnd)
  777. {
  778. h64 ^= (*p) * PRIME64_5;
  779. h64 = XXH_rotl64(h64, 11) * PRIME64_1;
  780. p++;
  781. }
  782. h64 ^= h64 >> 33;
  783. h64 *= PRIME64_2;
  784. h64 ^= h64 >> 29;
  785. h64 *= PRIME64_3;
  786. h64 ^= h64 >> 32;
  787. return h64;
  788. }
  789. unsigned long long XXH64_digest (const XXH64_state_t* state_in)
  790. {
  791. XXH_endianess endian_detected = (XXH_endianess)XXH_CPU_LITTLE_ENDIAN;
  792. if ((endian_detected==XXH_littleEndian) || XXH_FORCE_NATIVE_FORMAT)
  793. return XXH64_digest_endian(state_in, XXH_littleEndian);
  794. else
  795. return XXH64_digest_endian(state_in, XXH_bigEndian);
  796. }