123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155 |
- // This file is part of Eigen, a lightweight C++ template library
- // for linear algebra.
- //
- // Copyright (C) 2009-2010 Gael Guennebaud <gael.guennebaud@inria.fr>
- //
- // This Source Code Form is subject to the terms of the Mozilla
- // Public License v. 2.0. If a copy of the MPL was not distributed
- // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
- #include "common.h"
- struct scalar_norm1_op {
- typedef RealScalar result_type;
- EIGEN_EMPTY_STRUCT_CTOR(scalar_norm1_op)
- inline RealScalar operator() (const Scalar& a) const { return numext::norm1(a); }
- };
- namespace Eigen {
- namespace internal {
- template<> struct functor_traits<scalar_norm1_op >
- {
- enum { Cost = 3 * NumTraits<Scalar>::AddCost, PacketAccess = 0 };
- };
- }
- }
- // computes the sum of magnitudes of all vector elements or, for a complex vector x, the sum
- // res = |Rex1| + |Imx1| + |Rex2| + |Imx2| + ... + |Rexn| + |Imxn|, where x is a vector of order n
- RealScalar EIGEN_CAT(REAL_SCALAR_SUFFIX, EIGEN_BLAS_FUNC(asum))(int *n, RealScalar *px, int *incx)
- {
- // std::cerr << "__asum " << *n << " " << *incx << "\n";
- Complex* x = reinterpret_cast<Complex*>(px);
- if(*n<=0) return 0;
- if(*incx==1) return make_vector(x,*n).unaryExpr<scalar_norm1_op>().sum();
- else return make_vector(x,*n,std::abs(*incx)).unaryExpr<scalar_norm1_op>().sum();
- }
- int EIGEN_CAT(i, EIGEN_BLAS_FUNC(amax))(int *n, RealScalar *px, int *incx)
- {
- if(*n<=0) return 0;
- Scalar* x = reinterpret_cast<Scalar*>(px);
- DenseIndex ret;
- if(*incx==1) make_vector(x,*n).unaryExpr<scalar_norm1_op>().maxCoeff(&ret);
- else make_vector(x,*n,std::abs(*incx)).unaryExpr<scalar_norm1_op>().maxCoeff(&ret);
- return int(ret)+1;
- }
- int EIGEN_CAT(i, EIGEN_BLAS_FUNC(amin))(int *n, RealScalar *px, int *incx)
- {
- if(*n<=0) return 0;
- Scalar* x = reinterpret_cast<Scalar*>(px);
- DenseIndex ret;
- if(*incx==1) make_vector(x,*n).unaryExpr<scalar_norm1_op>().minCoeff(&ret);
- else make_vector(x,*n,std::abs(*incx)).unaryExpr<scalar_norm1_op>().minCoeff(&ret);
- return int(ret)+1;
- }
- // computes a dot product of a conjugated vector with another vector.
- int EIGEN_BLAS_FUNC(dotcw)(int *n, RealScalar *px, int *incx, RealScalar *py, int *incy, RealScalar* pres)
- {
- // std::cerr << "_dotc " << *n << " " << *incx << " " << *incy << "\n";
- Scalar* res = reinterpret_cast<Scalar*>(pres);
- if(*n<=0)
- {
- *res = Scalar(0);
- return 0;
- }
- Scalar* x = reinterpret_cast<Scalar*>(px);
- Scalar* y = reinterpret_cast<Scalar*>(py);
- if(*incx==1 && *incy==1) *res = (make_vector(x,*n).dot(make_vector(y,*n)));
- else if(*incx>0 && *incy>0) *res = (make_vector(x,*n,*incx).dot(make_vector(y,*n,*incy)));
- else if(*incx<0 && *incy>0) *res = (make_vector(x,*n,-*incx).reverse().dot(make_vector(y,*n,*incy)));
- else if(*incx>0 && *incy<0) *res = (make_vector(x,*n,*incx).dot(make_vector(y,*n,-*incy).reverse()));
- else if(*incx<0 && *incy<0) *res = (make_vector(x,*n,-*incx).reverse().dot(make_vector(y,*n,-*incy).reverse()));
- return 0;
- }
- // computes a vector-vector dot product without complex conjugation.
- int EIGEN_BLAS_FUNC(dotuw)(int *n, RealScalar *px, int *incx, RealScalar *py, int *incy, RealScalar* pres)
- {
- Scalar* res = reinterpret_cast<Scalar*>(pres);
- if(*n<=0)
- {
- *res = Scalar(0);
- return 0;
- }
- Scalar* x = reinterpret_cast<Scalar*>(px);
- Scalar* y = reinterpret_cast<Scalar*>(py);
- if(*incx==1 && *incy==1) *res = (make_vector(x,*n).cwiseProduct(make_vector(y,*n))).sum();
- else if(*incx>0 && *incy>0) *res = (make_vector(x,*n,*incx).cwiseProduct(make_vector(y,*n,*incy))).sum();
- else if(*incx<0 && *incy>0) *res = (make_vector(x,*n,-*incx).reverse().cwiseProduct(make_vector(y,*n,*incy))).sum();
- else if(*incx>0 && *incy<0) *res = (make_vector(x,*n,*incx).cwiseProduct(make_vector(y,*n,-*incy).reverse())).sum();
- else if(*incx<0 && *incy<0) *res = (make_vector(x,*n,-*incx).reverse().cwiseProduct(make_vector(y,*n,-*incy).reverse())).sum();
- return 0;
- }
- RealScalar EIGEN_CAT(REAL_SCALAR_SUFFIX, EIGEN_BLAS_FUNC(nrm2))(int *n, RealScalar *px, int *incx)
- {
- // std::cerr << "__nrm2 " << *n << " " << *incx << "\n";
- if(*n<=0) return 0;
- Scalar* x = reinterpret_cast<Scalar*>(px);
- if(*incx==1)
- return make_vector(x,*n).stableNorm();
- return make_vector(x,*n,*incx).stableNorm();
- }
- int EIGEN_BLAS_FUNC(EIGEN_CAT(REAL_SCALAR_SUFFIX, rot))(int *n, RealScalar *px, int *incx, RealScalar *py, int *incy, RealScalar *pc, RealScalar *ps)
- {
- if(*n<=0) return 0;
- Scalar* x = reinterpret_cast<Scalar*>(px);
- Scalar* y = reinterpret_cast<Scalar*>(py);
- RealScalar c = *pc;
- RealScalar s = *ps;
- StridedVectorType vx(make_vector(x,*n,std::abs(*incx)));
- StridedVectorType vy(make_vector(y,*n,std::abs(*incy)));
- Reverse<StridedVectorType> rvx(vx);
- Reverse<StridedVectorType> rvy(vy);
- // TODO implement mixed real-scalar rotations
- if(*incx<0 && *incy>0) internal::apply_rotation_in_the_plane(rvx, vy, JacobiRotation<Scalar>(c,s));
- else if(*incx>0 && *incy<0) internal::apply_rotation_in_the_plane(vx, rvy, JacobiRotation<Scalar>(c,s));
- else internal::apply_rotation_in_the_plane(vx, vy, JacobiRotation<Scalar>(c,s));
- return 0;
- }
- int EIGEN_BLAS_FUNC(EIGEN_CAT(REAL_SCALAR_SUFFIX, scal))(int *n, RealScalar *palpha, RealScalar *px, int *incx)
- {
- if(*n<=0) return 0;
- Scalar* x = reinterpret_cast<Scalar*>(px);
- RealScalar alpha = *palpha;
- // std::cerr << "__scal " << *n << " " << alpha << " " << *incx << "\n";
- if(*incx==1) make_vector(x,*n) *= alpha;
- else make_vector(x,*n,std::abs(*incx)) *= alpha;
- return 0;
- }
|