123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360 |
- // This file is part of Eigen, a lightweight C++ template library
- // for linear algebra.
- //
- // Copyright (C) 2009-2010 Gael Guennebaud <gael.guennebaud@inria.fr>
- //
- // This Source Code Form is subject to the terms of the Mozilla
- // Public License v. 2.0. If a copy of the MPL was not distributed
- // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
- #include "common.h"
- /** ZHEMV performs the matrix-vector operation
- *
- * y := alpha*A*x + beta*y,
- *
- * where alpha and beta are scalars, x and y are n element vectors and
- * A is an n by n hermitian matrix.
- */
- int EIGEN_BLAS_FUNC(hemv)(const char *uplo, const int *n, const RealScalar *palpha, const RealScalar *pa, const int *lda,
- const RealScalar *px, const int *incx, const RealScalar *pbeta, RealScalar *py, const int *incy)
- {
- typedef void (*functype)(int, const Scalar*, int, const Scalar*, Scalar*, Scalar);
- static const functype func[2] = {
- // array index: UP
- (internal::selfadjoint_matrix_vector_product<Scalar,int,ColMajor,Upper,false,false>::run),
- // array index: LO
- (internal::selfadjoint_matrix_vector_product<Scalar,int,ColMajor,Lower,false,false>::run),
- };
- const Scalar* a = reinterpret_cast<const Scalar*>(pa);
- const Scalar* x = reinterpret_cast<const Scalar*>(px);
- Scalar* y = reinterpret_cast<Scalar*>(py);
- Scalar alpha = *reinterpret_cast<const Scalar*>(palpha);
- Scalar beta = *reinterpret_cast<const Scalar*>(pbeta);
- // check arguments
- int info = 0;
- if(UPLO(*uplo)==INVALID) info = 1;
- else if(*n<0) info = 2;
- else if(*lda<std::max(1,*n)) info = 5;
- else if(*incx==0) info = 7;
- else if(*incy==0) info = 10;
- if(info)
- return xerbla_(SCALAR_SUFFIX_UP"HEMV ",&info,6);
- if(*n==0)
- return 1;
- const Scalar* actual_x = get_compact_vector(x,*n,*incx);
- Scalar* actual_y = get_compact_vector(y,*n,*incy);
- if(beta!=Scalar(1))
- {
- if(beta==Scalar(0)) make_vector(actual_y, *n).setZero();
- else make_vector(actual_y, *n) *= beta;
- }
- if(alpha!=Scalar(0))
- {
- int code = UPLO(*uplo);
- if(code>=2 || func[code]==0)
- return 0;
- func[code](*n, a, *lda, actual_x, actual_y, alpha);
- }
- if(actual_x!=x) delete[] actual_x;
- if(actual_y!=y) delete[] copy_back(actual_y,y,*n,*incy);
- return 1;
- }
- /** ZHBMV performs the matrix-vector operation
- *
- * y := alpha*A*x + beta*y,
- *
- * where alpha and beta are scalars, x and y are n element vectors and
- * A is an n by n hermitian band matrix, with k super-diagonals.
- */
- // int EIGEN_BLAS_FUNC(hbmv)(char *uplo, int *n, int *k, RealScalar *alpha, RealScalar *a, int *lda,
- // RealScalar *x, int *incx, RealScalar *beta, RealScalar *y, int *incy)
- // {
- // return 1;
- // }
- /** ZHPMV performs the matrix-vector operation
- *
- * y := alpha*A*x + beta*y,
- *
- * where alpha and beta are scalars, x and y are n element vectors and
- * A is an n by n hermitian matrix, supplied in packed form.
- */
- // int EIGEN_BLAS_FUNC(hpmv)(char *uplo, int *n, RealScalar *alpha, RealScalar *ap, RealScalar *x, int *incx, RealScalar *beta, RealScalar *y, int *incy)
- // {
- // return 1;
- // }
- /** ZHPR performs the hermitian rank 1 operation
- *
- * A := alpha*x*conjg( x' ) + A,
- *
- * where alpha is a real scalar, x is an n element vector and A is an
- * n by n hermitian matrix, supplied in packed form.
- */
- int EIGEN_BLAS_FUNC(hpr)(char *uplo, int *n, RealScalar *palpha, RealScalar *px, int *incx, RealScalar *pap)
- {
- typedef void (*functype)(int, Scalar*, const Scalar*, RealScalar);
- static const functype func[2] = {
- // array index: UP
- (internal::selfadjoint_packed_rank1_update<Scalar,int,ColMajor,Upper,false,Conj>::run),
- // array index: LO
- (internal::selfadjoint_packed_rank1_update<Scalar,int,ColMajor,Lower,false,Conj>::run),
- };
- Scalar* x = reinterpret_cast<Scalar*>(px);
- Scalar* ap = reinterpret_cast<Scalar*>(pap);
- RealScalar alpha = *palpha;
- int info = 0;
- if(UPLO(*uplo)==INVALID) info = 1;
- else if(*n<0) info = 2;
- else if(*incx==0) info = 5;
- if(info)
- return xerbla_(SCALAR_SUFFIX_UP"HPR ",&info,6);
- if(alpha==Scalar(0))
- return 1;
- Scalar* x_cpy = get_compact_vector(x, *n, *incx);
- int code = UPLO(*uplo);
- if(code>=2 || func[code]==0)
- return 0;
- func[code](*n, ap, x_cpy, alpha);
- if(x_cpy!=x) delete[] x_cpy;
- return 1;
- }
- /** ZHPR2 performs the hermitian rank 2 operation
- *
- * A := alpha*x*conjg( y' ) + conjg( alpha )*y*conjg( x' ) + A,
- *
- * where alpha is a scalar, x and y are n element vectors and A is an
- * n by n hermitian matrix, supplied in packed form.
- */
- int EIGEN_BLAS_FUNC(hpr2)(char *uplo, int *n, RealScalar *palpha, RealScalar *px, int *incx, RealScalar *py, int *incy, RealScalar *pap)
- {
- typedef void (*functype)(int, Scalar*, const Scalar*, const Scalar*, Scalar);
- static const functype func[2] = {
- // array index: UP
- (internal::packed_rank2_update_selector<Scalar,int,Upper>::run),
- // array index: LO
- (internal::packed_rank2_update_selector<Scalar,int,Lower>::run),
- };
- Scalar* x = reinterpret_cast<Scalar*>(px);
- Scalar* y = reinterpret_cast<Scalar*>(py);
- Scalar* ap = reinterpret_cast<Scalar*>(pap);
- Scalar alpha = *reinterpret_cast<Scalar*>(palpha);
- int info = 0;
- if(UPLO(*uplo)==INVALID) info = 1;
- else if(*n<0) info = 2;
- else if(*incx==0) info = 5;
- else if(*incy==0) info = 7;
- if(info)
- return xerbla_(SCALAR_SUFFIX_UP"HPR2 ",&info,6);
- if(alpha==Scalar(0))
- return 1;
- Scalar* x_cpy = get_compact_vector(x, *n, *incx);
- Scalar* y_cpy = get_compact_vector(y, *n, *incy);
- int code = UPLO(*uplo);
- if(code>=2 || func[code]==0)
- return 0;
- func[code](*n, ap, x_cpy, y_cpy, alpha);
- if(x_cpy!=x) delete[] x_cpy;
- if(y_cpy!=y) delete[] y_cpy;
- return 1;
- }
- /** ZHER performs the hermitian rank 1 operation
- *
- * A := alpha*x*conjg( x' ) + A,
- *
- * where alpha is a real scalar, x is an n element vector and A is an
- * n by n hermitian matrix.
- */
- int EIGEN_BLAS_FUNC(her)(char *uplo, int *n, RealScalar *palpha, RealScalar *px, int *incx, RealScalar *pa, int *lda)
- {
- typedef void (*functype)(int, Scalar*, int, const Scalar*, const Scalar*, const Scalar&);
- static const functype func[2] = {
- // array index: UP
- (selfadjoint_rank1_update<Scalar,int,ColMajor,Upper,false,Conj>::run),
- // array index: LO
- (selfadjoint_rank1_update<Scalar,int,ColMajor,Lower,false,Conj>::run),
- };
- Scalar* x = reinterpret_cast<Scalar*>(px);
- Scalar* a = reinterpret_cast<Scalar*>(pa);
- RealScalar alpha = *reinterpret_cast<RealScalar*>(palpha);
- int info = 0;
- if(UPLO(*uplo)==INVALID) info = 1;
- else if(*n<0) info = 2;
- else if(*incx==0) info = 5;
- else if(*lda<std::max(1,*n)) info = 7;
- if(info)
- return xerbla_(SCALAR_SUFFIX_UP"HER ",&info,6);
- if(alpha==RealScalar(0))
- return 1;
- Scalar* x_cpy = get_compact_vector(x, *n, *incx);
- int code = UPLO(*uplo);
- if(code>=2 || func[code]==0)
- return 0;
- func[code](*n, a, *lda, x_cpy, x_cpy, alpha);
- matrix(a,*n,*n,*lda).diagonal().imag().setZero();
- if(x_cpy!=x) delete[] x_cpy;
- return 1;
- }
- /** ZHER2 performs the hermitian rank 2 operation
- *
- * A := alpha*x*conjg( y' ) + conjg( alpha )*y*conjg( x' ) + A,
- *
- * where alpha is a scalar, x and y are n element vectors and A is an n
- * by n hermitian matrix.
- */
- int EIGEN_BLAS_FUNC(her2)(char *uplo, int *n, RealScalar *palpha, RealScalar *px, int *incx, RealScalar *py, int *incy, RealScalar *pa, int *lda)
- {
- typedef void (*functype)(int, Scalar*, int, const Scalar*, const Scalar*, Scalar);
- static const functype func[2] = {
- // array index: UP
- (internal::rank2_update_selector<Scalar,int,Upper>::run),
- // array index: LO
- (internal::rank2_update_selector<Scalar,int,Lower>::run),
- };
- Scalar* x = reinterpret_cast<Scalar*>(px);
- Scalar* y = reinterpret_cast<Scalar*>(py);
- Scalar* a = reinterpret_cast<Scalar*>(pa);
- Scalar alpha = *reinterpret_cast<Scalar*>(palpha);
- int info = 0;
- if(UPLO(*uplo)==INVALID) info = 1;
- else if(*n<0) info = 2;
- else if(*incx==0) info = 5;
- else if(*incy==0) info = 7;
- else if(*lda<std::max(1,*n)) info = 9;
- if(info)
- return xerbla_(SCALAR_SUFFIX_UP"HER2 ",&info,6);
- if(alpha==Scalar(0))
- return 1;
- Scalar* x_cpy = get_compact_vector(x, *n, *incx);
- Scalar* y_cpy = get_compact_vector(y, *n, *incy);
- int code = UPLO(*uplo);
- if(code>=2 || func[code]==0)
- return 0;
- func[code](*n, a, *lda, x_cpy, y_cpy, alpha);
- matrix(a,*n,*n,*lda).diagonal().imag().setZero();
- if(x_cpy!=x) delete[] x_cpy;
- if(y_cpy!=y) delete[] y_cpy;
- return 1;
- }
- /** ZGERU performs the rank 1 operation
- *
- * A := alpha*x*y' + A,
- *
- * where alpha is a scalar, x is an m element vector, y is an n element
- * vector and A is an m by n matrix.
- */
- int EIGEN_BLAS_FUNC(geru)(int *m, int *n, RealScalar *palpha, RealScalar *px, int *incx, RealScalar *py, int *incy, RealScalar *pa, int *lda)
- {
- Scalar* x = reinterpret_cast<Scalar*>(px);
- Scalar* y = reinterpret_cast<Scalar*>(py);
- Scalar* a = reinterpret_cast<Scalar*>(pa);
- Scalar alpha = *reinterpret_cast<Scalar*>(palpha);
- int info = 0;
- if(*m<0) info = 1;
- else if(*n<0) info = 2;
- else if(*incx==0) info = 5;
- else if(*incy==0) info = 7;
- else if(*lda<std::max(1,*m)) info = 9;
- if(info)
- return xerbla_(SCALAR_SUFFIX_UP"GERU ",&info,6);
- if(alpha==Scalar(0))
- return 1;
- Scalar* x_cpy = get_compact_vector(x,*m,*incx);
- Scalar* y_cpy = get_compact_vector(y,*n,*incy);
- internal::general_rank1_update<Scalar,int,ColMajor,false,false>::run(*m, *n, a, *lda, x_cpy, y_cpy, alpha);
- if(x_cpy!=x) delete[] x_cpy;
- if(y_cpy!=y) delete[] y_cpy;
- return 1;
- }
- /** ZGERC performs the rank 1 operation
- *
- * A := alpha*x*conjg( y' ) + A,
- *
- * where alpha is a scalar, x is an m element vector, y is an n element
- * vector and A is an m by n matrix.
- */
- int EIGEN_BLAS_FUNC(gerc)(int *m, int *n, RealScalar *palpha, RealScalar *px, int *incx, RealScalar *py, int *incy, RealScalar *pa, int *lda)
- {
- Scalar* x = reinterpret_cast<Scalar*>(px);
- Scalar* y = reinterpret_cast<Scalar*>(py);
- Scalar* a = reinterpret_cast<Scalar*>(pa);
- Scalar alpha = *reinterpret_cast<Scalar*>(palpha);
- int info = 0;
- if(*m<0) info = 1;
- else if(*n<0) info = 2;
- else if(*incx==0) info = 5;
- else if(*incy==0) info = 7;
- else if(*lda<std::max(1,*m)) info = 9;
- if(info)
- return xerbla_(SCALAR_SUFFIX_UP"GERC ",&info,6);
- if(alpha==Scalar(0))
- return 1;
- Scalar* x_cpy = get_compact_vector(x,*m,*incx);
- Scalar* y_cpy = get_compact_vector(y,*n,*incy);
- internal::general_rank1_update<Scalar,int,ColMajor,false,Conj>::run(*m, *n, a, *lda, x_cpy, y_cpy, alpha);
- if(x_cpy!=x) delete[] x_cpy;
- if(y_cpy!=y) delete[] y_cpy;
- return 1;
- }
|