123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183 |
- // This file is part of Eigen, a lightweight C++ template library
- // for linear algebra.
- //
- // Copyright (C) 2008 Benoit Jacob <jacob.benoit.1@gmail.com>
- // Copyright (C) 2015 Gael Guennebaud <gael.guennebaud@inria.fr>
- //
- // This Source Code Form is subject to the terms of the Mozilla
- // Public License v. 2.0. If a copy of the MPL was not distributed
- // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
- #define TEST_ENABLE_TEMPORARY_TRACKING
- #define EIGEN_CACHEFRIENDLY_PRODUCT_THRESHOLD 8
- // ^^ see bug 1449
- #include "main.h"
- template<typename MatrixType> void matrixRedux(const MatrixType& m)
- {
- typedef typename MatrixType::Scalar Scalar;
- typedef typename MatrixType::RealScalar RealScalar;
- Index rows = m.rows();
- Index cols = m.cols();
- MatrixType m1 = MatrixType::Random(rows, cols);
- // The entries of m1 are uniformly distributed in [0,1], so m1.prod() is very small. This may lead to test
- // failures if we underflow into denormals. Thus, we scale so that entries are close to 1.
- MatrixType m1_for_prod = MatrixType::Ones(rows, cols) + RealScalar(0.2) * m1;
- Matrix<Scalar, MatrixType::RowsAtCompileTime, MatrixType::RowsAtCompileTime> m2(rows,rows);
- m2.setRandom();
- VERIFY_IS_MUCH_SMALLER_THAN(MatrixType::Zero(rows, cols).sum(), Scalar(1));
- VERIFY_IS_APPROX(MatrixType::Ones(rows, cols).sum(), Scalar(float(rows*cols))); // the float() here to shut up excessive MSVC warning about int->complex conversion being lossy
- Scalar s(0), p(1), minc(numext::real(m1.coeff(0))), maxc(numext::real(m1.coeff(0)));
- for(int j = 0; j < cols; j++)
- for(int i = 0; i < rows; i++)
- {
- s += m1(i,j);
- p *= m1_for_prod(i,j);
- minc = (std::min)(numext::real(minc), numext::real(m1(i,j)));
- maxc = (std::max)(numext::real(maxc), numext::real(m1(i,j)));
- }
- const Scalar mean = s/Scalar(RealScalar(rows*cols));
- VERIFY_IS_APPROX(m1.sum(), s);
- VERIFY_IS_APPROX(m1.mean(), mean);
- VERIFY_IS_APPROX(m1_for_prod.prod(), p);
- VERIFY_IS_APPROX(m1.real().minCoeff(), numext::real(minc));
- VERIFY_IS_APPROX(m1.real().maxCoeff(), numext::real(maxc));
-
- // test that partial reduction works if nested expressions is forced to evaluate early
- VERIFY_IS_APPROX((m1.matrix() * m1.matrix().transpose()) .cwiseProduct(m2.matrix()).rowwise().sum().sum(),
- (m1.matrix() * m1.matrix().transpose()).eval().cwiseProduct(m2.matrix()).rowwise().sum().sum());
- // test slice vectorization assuming assign is ok
- Index r0 = internal::random<Index>(0,rows-1);
- Index c0 = internal::random<Index>(0,cols-1);
- Index r1 = internal::random<Index>(r0+1,rows)-r0;
- Index c1 = internal::random<Index>(c0+1,cols)-c0;
- VERIFY_IS_APPROX(m1.block(r0,c0,r1,c1).sum(), m1.block(r0,c0,r1,c1).eval().sum());
- VERIFY_IS_APPROX(m1.block(r0,c0,r1,c1).mean(), m1.block(r0,c0,r1,c1).eval().mean());
- VERIFY_IS_APPROX(m1_for_prod.block(r0,c0,r1,c1).prod(), m1_for_prod.block(r0,c0,r1,c1).eval().prod());
- VERIFY_IS_APPROX(m1.block(r0,c0,r1,c1).real().minCoeff(), m1.block(r0,c0,r1,c1).real().eval().minCoeff());
- VERIFY_IS_APPROX(m1.block(r0,c0,r1,c1).real().maxCoeff(), m1.block(r0,c0,r1,c1).real().eval().maxCoeff());
- // regression for bug 1090
- const int R1 = MatrixType::RowsAtCompileTime>=2 ? MatrixType::RowsAtCompileTime/2 : 6;
- const int C1 = MatrixType::ColsAtCompileTime>=2 ? MatrixType::ColsAtCompileTime/2 : 6;
- if(R1<=rows-r0 && C1<=cols-c0)
- {
- VERIFY_IS_APPROX( (m1.template block<R1,C1>(r0,c0).sum()), m1.block(r0,c0,R1,C1).sum() );
- }
-
- // test empty objects
- VERIFY_IS_APPROX(m1.block(r0,c0,0,0).sum(), Scalar(0));
- VERIFY_IS_APPROX(m1.block(r0,c0,0,0).prod(), Scalar(1));
- // test nesting complex expression
- VERIFY_EVALUATION_COUNT( (m1.matrix()*m1.matrix().transpose()).sum(), (MatrixType::IsVectorAtCompileTime && MatrixType::SizeAtCompileTime!=1 ? 0 : 1) );
- VERIFY_EVALUATION_COUNT( ((m1.matrix()*m1.matrix().transpose())+m2).sum(),(MatrixType::IsVectorAtCompileTime && MatrixType::SizeAtCompileTime!=1 ? 0 : 1));
- }
- template<typename VectorType> void vectorRedux(const VectorType& w)
- {
- using std::abs;
- typedef typename VectorType::Scalar Scalar;
- typedef typename NumTraits<Scalar>::Real RealScalar;
- Index size = w.size();
- VectorType v = VectorType::Random(size);
- VectorType v_for_prod = VectorType::Ones(size) + Scalar(0.2) * v; // see comment above declaration of m1_for_prod
- for(int i = 1; i < size; i++)
- {
- Scalar s(0), p(1);
- RealScalar minc(numext::real(v.coeff(0))), maxc(numext::real(v.coeff(0)));
- for(int j = 0; j < i; j++)
- {
- s += v[j];
- p *= v_for_prod[j];
- minc = (std::min)(minc, numext::real(v[j]));
- maxc = (std::max)(maxc, numext::real(v[j]));
- }
- VERIFY_IS_MUCH_SMALLER_THAN(abs(s - v.head(i).sum()), Scalar(1));
- VERIFY_IS_APPROX(p, v_for_prod.head(i).prod());
- VERIFY_IS_APPROX(minc, v.real().head(i).minCoeff());
- VERIFY_IS_APPROX(maxc, v.real().head(i).maxCoeff());
- }
- for(int i = 0; i < size-1; i++)
- {
- Scalar s(0), p(1);
- RealScalar minc(numext::real(v.coeff(i))), maxc(numext::real(v.coeff(i)));
- for(int j = i; j < size; j++)
- {
- s += v[j];
- p *= v_for_prod[j];
- minc = (std::min)(minc, numext::real(v[j]));
- maxc = (std::max)(maxc, numext::real(v[j]));
- }
- VERIFY_IS_MUCH_SMALLER_THAN(abs(s - v.tail(size-i).sum()), Scalar(1));
- VERIFY_IS_APPROX(p, v_for_prod.tail(size-i).prod());
- VERIFY_IS_APPROX(minc, v.real().tail(size-i).minCoeff());
- VERIFY_IS_APPROX(maxc, v.real().tail(size-i).maxCoeff());
- }
- for(int i = 0; i < size/2; i++)
- {
- Scalar s(0), p(1);
- RealScalar minc(numext::real(v.coeff(i))), maxc(numext::real(v.coeff(i)));
- for(int j = i; j < size-i; j++)
- {
- s += v[j];
- p *= v_for_prod[j];
- minc = (std::min)(minc, numext::real(v[j]));
- maxc = (std::max)(maxc, numext::real(v[j]));
- }
- VERIFY_IS_MUCH_SMALLER_THAN(abs(s - v.segment(i, size-2*i).sum()), Scalar(1));
- VERIFY_IS_APPROX(p, v_for_prod.segment(i, size-2*i).prod());
- VERIFY_IS_APPROX(minc, v.real().segment(i, size-2*i).minCoeff());
- VERIFY_IS_APPROX(maxc, v.real().segment(i, size-2*i).maxCoeff());
- }
-
- // test empty objects
- VERIFY_IS_APPROX(v.head(0).sum(), Scalar(0));
- VERIFY_IS_APPROX(v.tail(0).prod(), Scalar(1));
- VERIFY_RAISES_ASSERT(v.head(0).mean());
- VERIFY_RAISES_ASSERT(v.head(0).minCoeff());
- VERIFY_RAISES_ASSERT(v.head(0).maxCoeff());
- }
- EIGEN_DECLARE_TEST(redux)
- {
- // the max size cannot be too large, otherwise reduxion operations obviously generate large errors.
- int maxsize = (std::min)(100,EIGEN_TEST_MAX_SIZE);
- TEST_SET_BUT_UNUSED_VARIABLE(maxsize);
- for(int i = 0; i < g_repeat; i++) {
- CALL_SUBTEST_1( matrixRedux(Matrix<float, 1, 1>()) );
- CALL_SUBTEST_1( matrixRedux(Array<float, 1, 1>()) );
- CALL_SUBTEST_2( matrixRedux(Matrix2f()) );
- CALL_SUBTEST_2( matrixRedux(Array2f()) );
- CALL_SUBTEST_2( matrixRedux(Array22f()) );
- CALL_SUBTEST_3( matrixRedux(Matrix4d()) );
- CALL_SUBTEST_3( matrixRedux(Array4d()) );
- CALL_SUBTEST_3( matrixRedux(Array44d()) );
- CALL_SUBTEST_4( matrixRedux(MatrixXcf(internal::random<int>(1,maxsize), internal::random<int>(1,maxsize))) );
- CALL_SUBTEST_4( matrixRedux(ArrayXXcf(internal::random<int>(1,maxsize), internal::random<int>(1,maxsize))) );
- CALL_SUBTEST_5( matrixRedux(MatrixXd (internal::random<int>(1,maxsize), internal::random<int>(1,maxsize))) );
- CALL_SUBTEST_5( matrixRedux(ArrayXXd (internal::random<int>(1,maxsize), internal::random<int>(1,maxsize))) );
- CALL_SUBTEST_6( matrixRedux(MatrixXi (internal::random<int>(1,maxsize), internal::random<int>(1,maxsize))) );
- CALL_SUBTEST_6( matrixRedux(ArrayXXi (internal::random<int>(1,maxsize), internal::random<int>(1,maxsize))) );
- }
- for(int i = 0; i < g_repeat; i++) {
- CALL_SUBTEST_7( vectorRedux(Vector4f()) );
- CALL_SUBTEST_7( vectorRedux(Array4f()) );
- CALL_SUBTEST_5( vectorRedux(VectorXd(internal::random<int>(1,maxsize))) );
- CALL_SUBTEST_5( vectorRedux(ArrayXd(internal::random<int>(1,maxsize))) );
- CALL_SUBTEST_8( vectorRedux(VectorXf(internal::random<int>(1,maxsize))) );
- CALL_SUBTEST_8( vectorRedux(ArrayXf(internal::random<int>(1,maxsize))) );
- }
- }
|