123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124 |
- /******************************************************************************
- * Copyright (c) 2013, NVIDIA CORPORATION. All rights reserved.
- *
- * Redistribution and use in source and binary forms, with or without
- * modification, are permitted provided that the following conditions are met:
- * * Redistributions of source code must retain the above copyright
- * notice, this list of conditions and the following disclaimer.
- * * Redistributions in binary form must reproduce the above copyright
- * notice, this list of conditions and the following disclaimer in the
- * documentation and/or other materials provided with the distribution.
- * * Neither the name of the NVIDIA CORPORATION nor the
- * names of its contributors may be used to endorse or promote products
- * derived from this software without specific prior written permission.
- *
- * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
- * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
- * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
- * ARE DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE FOR ANY
- * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
- * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
- * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
- * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
- * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
- * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
- *
- ******************************************************************************/
- /******************************************************************************
- *
- * Code and text by Sean Baxter, NVIDIA Research
- * See http://nvlabs.github.io/moderngpu for repository and documentation.
- *
- ******************************************************************************/
- #pragma once
- #include "util/static.h"
- namespace mgpu {
- struct SparseMatrix {
- int height, width, nz;
- std::vector<int> csr; // height
- std::vector<int> cols; // nz
- std::vector<double> matrix; // nz
- };
- bool ReadSparseMatrix(FILE* f, std::auto_ptr<SparseMatrix>* ppMatrix,
- std::string& err);
- bool ReadSparseMatrix(const char* filename,
- std::auto_ptr<SparseMatrix>* ppMatrix, std::string& err);
- bool LoadBinaryMatrix(const char* filename,
- std::auto_ptr<SparseMatrix>* ppMatrix);
- bool StoreBinaryMatrix(const char* filename, const SparseMatrix& matrix);
- bool LoadCachedMatrix(const char* filename,
- std::auto_ptr<SparseMatrix>* ppMatrix, std::string& err);
- // Multiply the matrix by a vector of 1s.
- template<typename T>
- void SpmvTest(const SparseMatrix& m, T* results) {
- memset(results, 0, sizeof(T) * m.height);
- for(int row = 0; row < m.height; ++row) {
- T product = 0;
- int begin = m.csr[row];
- int end = (row + 1 < m.height) ? m.csr[row + 1] : m.nz;
- for(int i = begin; i < end; ++i)
- product += (T)m.matrix[i];
- results[row] = product;
- }
- }
- template<typename T>
- void CompareVecs(const T* test, const T* ref, int count) {
- for(int i = 0; i < count; ++i) {
- double x = ref[i];
- double y = test[i];
- double diff = fabs(x - y);
- if(diff > 1.0e-5) {
- if(y > 0) {
- if(1.01 * x < y || 0.99 * x > y) {
- printf("BAD OUTPUT AT COMPONENT %d: %8.5e vs %8.5e\n", i,
- x, y);
- // exit(0);
- return;
- }
- } else {
- if(1.01 * x > y || 0.99 * x < y) {
- printf("BAD OUTPUT AT COMPONENT %d: %8.5e vs %8.5e\n", i,
- x, y);
- // exit(0);
- return;
- }
- }
- }
- }
- }
- struct MatrixStats {
- int height, width, nz;
-
- // Row density moments:
- double mean;
- double stddev;
- double skewness;
- };
- MatrixStats ComputeMatrixStats(const SparseMatrix& m);
- int64 MulSparseMatrices(const SparseMatrix& A, const SparseMatrix& B,
- std::auto_ptr<SparseMatrix>* ppC);
- int64 ComputeProductCount(const SparseMatrix& A, const SparseMatrix& B);
- void ComputeColRanges(const SparseMatrix& A, const SparseMatrix& B,
- int* colMin, int* colMax);
- } // namespace mgpu
|