/*
* Copyright 2010 SRI International
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with this program. If not, see .
*/
#include
#include
#include
#include
#include
#include
#include
#include
#include "open_karto/Mapper.h"
namespace karto
{
// enable this for verbose debug information
// #define KARTO_DEBUG
#define MAX_VARIANCE 500.0
#define DISTANCE_PENALTY_GAIN 0.2
#define ANGLE_PENALTY_GAIN 0.2
////////////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////////////
// 注册一个新的传感器,为该传感器创建一个新的 ScanManager 。
void MapperSensorManager::RegisterSensor(const Name &rSensorName)
{
if (GetScanManager(rSensorName) == NULL)
{
m_ScanManagers[rSensorName] = new ScanManager(m_RunningBufferMaximumSize, m_RunningBufferMaximumDistance);
}
}
/**
* Gets scan from given device with given ID 根据传感器名称和扫描索引获取特定的扫描数据
* @param rSensorName
* @param scanNum
* @return localized range scan
*/
LocalizedRangeScan *MapperSensorManager::GetScan(const Name &rSensorName, kt_int32s scanIndex)
{
ScanManager *pScanManager = GetScanManager(rSensorName);
if (pScanManager != NULL)
{
return pScanManager->GetScans().at(scanIndex);
}
assert(false);
return NULL;
}
/**
* Adds scan to scan vector of device that recorded scan
* 向传感器的扫描向量中添加一个新的扫描,并更新全局扫描列表和下一个扫描ID
* @param pScan
*/
void MapperSensorManager::AddScan(LocalizedRangeScan *pScan)
{
GetScanManager(pScan)->AddScan(pScan, m_NextScanId);
m_Scans.push_back(pScan);
m_NextScanId++;
}
/**
* Gets all scans of all devices 获取所有设备的所有扫描数据
* @return all scans of all devices
*/
LocalizedRangeScanVector MapperSensorManager::GetAllScans()
{
LocalizedRangeScanVector scans;
forEach(ScanManagerMap, &m_ScanManagers)
{
LocalizedRangeScanVector &rScans = iter->second->GetScans();
scans.insert(scans.end(), rScans.begin(), rScans.end());
}
return scans;
}
/**
* Deletes all scan managers of all devices
* 删除所有扫描管理器并清除扫描列表
*/
void MapperSensorManager::Clear()
{
// SensorManager::Clear();
forEach(ScanManagerMap, &m_ScanManagers)
{
delete iter->second;
}
m_ScanManagers.clear();
}
////////////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////////////
// 析构函数
ScanMatcher::~ScanMatcher()
{
delete m_pCorrelationGrid;
delete m_pSearchSpaceProbs;
delete m_pGridLookup;
}
// 创建一个新的ScanMatcher实例
ScanMatcher *ScanMatcher::Create(Mapper *pMapper, kt_double searchSize, kt_double resolution,
kt_double smearDeviation, kt_double rangeThreshold)
{
// invalid parameters
if (resolution <= 0)
{
return NULL;
}
if (searchSize <= 0)
{
return NULL;
}
if (smearDeviation < 0)
{
return NULL;
}
if (rangeThreshold <= 0)
{
return NULL;
}
assert(math::DoubleEqual(math::Round(searchSize / resolution), (searchSize / resolution)));
// calculate search space in grid coordinates
kt_int32u searchSpaceSideSize = static_cast(math::Round(searchSize / resolution) + 1);
// compute requisite size of correlation grid (pad grid so that scan points can't fall off the grid
// if a scan is on the border of the search space)
kt_int32u pointReadingMargin = static_cast(ceil(rangeThreshold / resolution));
kt_int32s gridSize = searchSpaceSideSize + 2 * pointReadingMargin;
// create correlation grid
assert(gridSize % 2 == 1);
CorrelationGrid *pCorrelationGrid = CorrelationGrid::CreateGrid(gridSize, gridSize, resolution, smearDeviation);
// create search space probabilities
Grid *pSearchSpaceProbs = Grid::CreateGrid(searchSpaceSideSize,
searchSpaceSideSize, resolution);
ScanMatcher *pScanMatcher = new ScanMatcher(pMapper);
pScanMatcher->m_pCorrelationGrid = pCorrelationGrid;
pScanMatcher->m_pSearchSpaceProbs = pSearchSpaceProbs;
pScanMatcher->m_pGridLookup = new GridIndexLookup(pCorrelationGrid);
return pScanMatcher;
}
/**
* 将给定的扫描与一组基扫描进行匹配,并输出最佳姿态和协方差
* Match given scan against set of scans
* @param pScan scan being scan-matched
* @param rBaseScans set of scans whose points will mark cells in grid as being occupied
* @param rMean output parameter of mean (best pose) of match
* @param rCovariance output parameter of covariance of match
* @param doPenalize whether to penalize matches further from the search center
* @param doRefineMatch whether to do finer-grained matching if coarse match is good (default is true)
* @return strength of response
*/
kt_double ScanMatcher::MatchScan(LocalizedRangeScan *pScan, // 给定的用来匹配的点云
const LocalizedRangeScanVector &rBaseScans, // 已知的地图点云
Pose2 &rMean, // 匹配平均(最佳姿态)输出参数
Matrix3 &rCovariance, // 匹配协方差输出参数
kt_bool doPenalize, // 是否对距离搜索中心更远的匹配进行处罚
kt_bool doRefineMatch) // 是否进一步惩罚搜索中心的匹配,如果粗略匹配良好,是否进行更细粒度的匹配(默认为true)
{
///////////////////////////////////////
// set scan pose to be center of grid
// 1. get scan position
Pose2 scanPose = pScan->GetSensorPose();
// scan has no readings; cannot do scan matching
// best guess of pose is based off of adjusted odometer reading 姿势的最佳猜测是基于调整后的里程表读数
if (pScan->GetNumberOfRangeReadings() == 0)
{
// 扫描没有读数;无法进行扫描匹配
rMean = scanPose;
// maximum covariance
rCovariance(0, 0) = MAX_VARIANCE; // XX
rCovariance(1, 1) = MAX_VARIANCE; // YY
rCovariance(2, 2) = 4 * math::Square(m_pMapper->m_pCoarseAngleResolution->GetValue()); // TH*TH
return 0.0;
}
// 2. get size of grid
Rectangle2 roi = m_pCorrelationGrid->GetROI(); // 获得感兴趣的区域
// 3. compute offset (in meters - lower left corner) 计算偏移量(单位:米-左下角)
Vector2 offset;
offset.SetX(scanPose.GetX() - (0.5 * (roi.GetWidth() - 1) * m_pCorrelationGrid->GetResolution()));
offset.SetY(scanPose.GetY() - (0.5 * (roi.GetHeight() - 1) * m_pCorrelationGrid->GetResolution()));
// 4. set offset 设置偏移量
m_pCorrelationGrid->GetCoordinateConverter()->SetOffset(offset);
///////////////////////////////////////
// set up correlation grid 设置相关栅格
AddScans(rBaseScans, scanPose.GetPosition());
// compute how far to search in each direction 计算在每个方向上搜索的距离
Vector2 searchDimensions(m_pSearchSpaceProbs->GetWidth(), m_pSearchSpaceProbs->GetHeight());
Vector2 coarseSearchOffset(0.5 * (searchDimensions.GetX() - 1) * m_pCorrelationGrid->GetResolution(),
0.5 * (searchDimensions.GetY() - 1) * m_pCorrelationGrid->GetResolution());
// a coarse search only checks half the cells in each dimension
// 粗略搜索只检查每个维度中的一半单元格
Vector2 coarseSearchResolution(2 * m_pCorrelationGrid->GetResolution(),
2 * m_pCorrelationGrid->GetResolution());
// actual scan-matching 实际扫描匹配
kt_double bestResponse = CorrelateScan(pScan, scanPose, coarseSearchOffset, coarseSearchResolution,
m_pMapper->m_pCoarseSearchAngleOffset->GetValue(),
m_pMapper->m_pCoarseAngleResolution->GetValue(),
doPenalize, rMean, rCovariance, false);
if (m_pMapper->m_pUseResponseExpansion->GetValue() == true)
{
if (math::DoubleEqual(bestResponse, 0.0))
{
// #ifdef KARTO_DEBUG
// std::cout << "Mapper Info: Expanding response search space!" << std::endl;
// #endif
// try and increase search angle offset with 20 degrees and do another match
kt_double newSearchAngleOffset = m_pMapper->m_pCoarseSearchAngleOffset->GetValue();
for (kt_int32u i = 0; i < 3; i++)
{
newSearchAngleOffset += math::DegreesToRadians(20);
bestResponse = CorrelateScan(pScan, scanPose, coarseSearchOffset, coarseSearchResolution,
newSearchAngleOffset, m_pMapper->m_pCoarseAngleResolution->GetValue(),
doPenalize, rMean, rCovariance, false);
if (math::DoubleEqual(bestResponse, 0.0) == false)
{
break;
}
}
// #ifdef KARTO_DEBUG
// if (math::DoubleEqual(bestResponse, 0.0))
// {
// std::cout << "Mapper Warning: Unable to calculate response!" << std::endl;
// }
// #endif
}
}
if (doRefineMatch)
{
Vector2 fineSearchOffset(coarseSearchResolution * 0.5);
Vector2 fineSearchResolution(m_pCorrelationGrid->GetResolution(), m_pCorrelationGrid->GetResolution());
bestResponse = CorrelateScan(pScan, rMean, fineSearchOffset, fineSearchResolution,
0.5 * m_pMapper->m_pCoarseAngleResolution->GetValue(),
m_pMapper->m_pFineSearchAngleOffset->GetValue(),
doPenalize, rMean, rCovariance, true);
}
// #ifdef KARTO_DEBUG
// std::cout << " BEST POSE = " << rMean << " BEST RESPONSE = " << bestResponse << ", VARIANCE = "
// << rCovariance(0, 0) << ", " << rCovariance(1, 1) << std::endl;
// #endif
assert(math::InRange(rMean.GetHeading(), -KT_PI, KT_PI));
return bestResponse;
}
/**
* 在给定的搜索空间内,找到与扫描中心最匹配的姿态。 !!! 核心函数 !!!
* Finds the best pose for the scan centering the search in the correlation grid
* at the given pose and search in the space by the vector and angular offsets
* in increments of the given resolutions
* @param pScan scan to match against correlation grid
* @param rSearchCenter the center of the search space
* @param rSearchSpaceOffset searches poses in the area offset by this vector around search center
* @param rSearchSpaceResolution how fine a granularity to search in the search space
* @param searchAngleOffset searches poses in the angles offset by this angle around search center
* @param searchAngleResolution how fine a granularity to search in the angular search space
* @param doPenalize whether to penalize matches further from the search center
* @param rMean output parameter of mean (best pose) of match
* @param rCovariance output parameter of covariance of match
* @param doingFineMatch whether to do a finer search after coarse search
* @return strength of response
*
* @param pScan 扫描以匹配相关网格
* @param rSearchCenter 搜索空间的中心
* @param rSearchSpaceOffset 在搜索中心周围由该矢量偏移的区域中搜索姿势
* @param rSearchSpaceResolution 在搜索空间中搜索的分辨率
* @param searchAngleOffset 在搜索中心周围偏移此角度的角度内搜索姿势
* @param searchAngleResolution 在角搜索空间中搜索的分辨率
* @param doPenalize 是否对距离搜索中心更远的匹配进行处罚
* @param rMean 匹配平均(最佳姿态)输出参数
* @param rCovariance 匹配协方差输出参数
* @param doingFineMatch 是否在粗略搜索后进行更精细的搜索
* @return 反应强度
*/
kt_double ScanMatcher::CorrelateScan(LocalizedRangeScan *pScan, const Pose2 &rSearchCenter,
const Vector2 &rSearchSpaceOffset,
const Vector2 &rSearchSpaceResolution,
kt_double searchAngleOffset, kt_double searchAngleResolution,
kt_bool doPenalize, Pose2 &rMean, Matrix3 &rCovariance, kt_bool doingFineMatch)
{
assert(searchAngleResolution != 0.0);
// setup lookup arrays 建立查询数组
m_pGridLookup->ComputeOffsets(pScan, rSearchCenter.GetHeading(), searchAngleOffset, searchAngleResolution);
// only initialize probability grid if computing positional covariance (during coarse match)
// 仅在计算位置协方差时初始化概率网格(在粗略匹配期间)
if (!doingFineMatch) // doingFineMatch == true,
{
m_pSearchSpaceProbs->Clear();
// position search grid - finds lower left corner of search grid
Vector2 offset(rSearchCenter.GetPosition() - rSearchSpaceOffset);
m_pSearchSpaceProbs->GetCoordinateConverter()->SetOffset(offset);
}
// calculate position arrays 计算位置数组
std::vector xPoses;
kt_int32u nX = static_cast(math::Round(rSearchSpaceOffset.GetX() *
2.0 / rSearchSpaceResolution.GetX()) +
1);
kt_double startX = -rSearchSpaceOffset.GetX();
for (kt_int32u xIndex = 0; xIndex < nX; xIndex++)
{
xPoses.push_back(startX + xIndex * rSearchSpaceResolution.GetX());
}
assert(math::DoubleEqual(xPoses.back(), -startX));
std::vector yPoses;
kt_int32u nY = static_cast(math::Round(rSearchSpaceOffset.GetY() *
2.0 / rSearchSpaceResolution.GetY()) +
1);
kt_double startY = -rSearchSpaceOffset.GetY();
for (kt_int32u yIndex = 0; yIndex < nY; yIndex++)
{
yPoses.push_back(startY + yIndex * rSearchSpaceResolution.GetY());
}
assert(math::DoubleEqual(yPoses.back(), -startY));
// calculate pose response array size 计算姿态响应阵列大小
kt_int32u nAngles = static_cast(math::Round(searchAngleOffset * 2.0 / searchAngleResolution) + 1);
kt_int32u poseResponseSize = static_cast(xPoses.size() * yPoses.size() * nAngles);
// allocate array 分配数组
std::pair *pPoseResponse = new std::pair[poseResponseSize];
Vector2 startGridPoint = m_pCorrelationGrid->WorldToGrid(Vector2(rSearchCenter.GetX() + startX, rSearchCenter.GetY() + startY));
kt_int32u poseResponseCounter = 0;
forEachAs(std::vector, &yPoses, yIter) // 遍历Y
{
kt_double y = *yIter;
kt_double newPositionY = rSearchCenter.GetY() + y;
kt_double squareY = math::Square(y);
forEachAs(std::vector, &xPoses, xIter) // 遍历X
{
kt_double x = *xIter;
kt_double newPositionX = rSearchCenter.GetX() + x;
kt_double squareX = math::Square(x);
Vector2 gridPoint = m_pCorrelationGrid->WorldToGrid(Vector2(newPositionX, newPositionY));
kt_int32s gridIndex = m_pCorrelationGrid->GridIndex(gridPoint);
assert(gridIndex >= 0);
kt_double angle = 0.0;
kt_double startAngle = rSearchCenter.GetHeading() - searchAngleOffset;
for (kt_int32u angleIndex = 0; angleIndex < nAngles; angleIndex++) // 遍历角度
{
angle = startAngle + angleIndex * searchAngleResolution;
kt_double response = GetResponse(angleIndex, gridIndex); // 获取当前角度下的匹配响应值
if (doPenalize && (math::DoubleEqual(response, 0.0) == false))
{
// simple model (approximate Gaussian) to take odometry into account
kt_double squaredDistance = squareX + squareY;
kt_double distancePenalty = 1.0 - (DISTANCE_PENALTY_GAIN *
squaredDistance / m_pMapper->m_pDistanceVariancePenalty->GetValue());
distancePenalty = math::Maximum(distancePenalty, m_pMapper->m_pMinimumDistancePenalty->GetValue());
kt_double squaredAngleDistance = math::Square(angle - rSearchCenter.GetHeading());
kt_double anglePenalty = 1.0 - (ANGLE_PENALTY_GAIN *
squaredAngleDistance / m_pMapper->m_pAngleVariancePenalty->GetValue());
anglePenalty = math::Maximum(anglePenalty, m_pMapper->m_pMinimumAnglePenalty->GetValue());
response *= (distancePenalty * anglePenalty);
}
// store response and pose
pPoseResponse[poseResponseCounter] = std::pair(response, Pose2(newPositionX, newPositionY,
math::NormalizeAngle(angle)));
poseResponseCounter++;
}
assert(math::DoubleEqual(angle, rSearchCenter.GetHeading() + searchAngleOffset));
}
}
assert(poseResponseSize == poseResponseCounter);
// find value of best response (in [0; 1])
kt_double bestResponse = -1;
for (kt_int32u i = 0; i < poseResponseSize; i++)
{
bestResponse = math::Maximum(bestResponse, pPoseResponse[i].first);
// will compute positional covariance, save best relative probability for each cell
if (!doingFineMatch)
{
const Pose2 &rPose = pPoseResponse[i].second;
Vector2 grid = m_pSearchSpaceProbs->WorldToGrid(rPose.GetPosition());
// Changed (kt_double*) to the reinterpret_cast - Luc
kt_double *ptr = reinterpret_cast(m_pSearchSpaceProbs->GetDataPointer(grid));
if (ptr == NULL)
{
throw std::runtime_error("Mapper FATAL ERROR - Index out of range in probability search!");
}
*ptr = math::Maximum(pPoseResponse[i].first, *ptr);
}
}
// average all poses with same highest response
Vector2 averagePosition;
kt_double thetaX = 0.0;
kt_double thetaY = 0.0;
kt_int32s averagePoseCount = 0;
for (kt_int32u i = 0; i < poseResponseSize; i++)
{
if (math::DoubleEqual(pPoseResponse[i].first, bestResponse))
{
averagePosition += pPoseResponse[i].second.GetPosition();
kt_double heading = pPoseResponse[i].second.GetHeading();
thetaX += cos(heading);
thetaY += sin(heading);
averagePoseCount++;
}
}
Pose2 averagePose;
if (averagePoseCount > 0)
{
averagePosition /= averagePoseCount;
thetaX /= averagePoseCount;
thetaY /= averagePoseCount;
averagePose = Pose2(averagePosition, atan2(thetaY, thetaX));
}
else
{
throw std::runtime_error("Mapper FATAL ERROR - Unable to find best position");
}
// delete pose response array
delete[] pPoseResponse;
// #ifdef KARTO_DEBUG
// std::cout << "bestPose: " << averagePose << std::endl;
// std::cout << "bestResponse: " << bestResponse << std::endl;
// #endif
if (!doingFineMatch)
{
ComputePositionalCovariance(averagePose, bestResponse, rSearchCenter, rSearchSpaceOffset,
rSearchSpaceResolution, searchAngleResolution, rCovariance);
}
else
{
ComputeAngularCovariance(averagePose, bestResponse, rSearchCenter,
searchAngleOffset, searchAngleResolution, rCovariance);
}
rMean = averagePose;
// #ifdef KARTO_DEBUG
// std::cout << "bestPose: " << averagePose << std::endl;
// #endif
if (bestResponse > 1.0)
{
bestResponse = 1.0;
}
assert(math::InRange(bestResponse, 0.0, 1.0));
assert(math::InRange(rMean.GetHeading(), -KT_PI, KT_PI));
return bestResponse;
}
/**
* 计算最佳姿态的位置协方差
* Computes the positional covariance of the best pose
* @param rBestPose
* @param bestResponse
* @param rSearchCenter
* @param rSearchSpaceOffset
* @param rSearchSpaceResolution
* @param searchAngleResolution
* @param rCovariance
*/
void ScanMatcher::ComputePositionalCovariance(const Pose2 &rBestPose, kt_double bestResponse,
const Pose2 &rSearchCenter,
const Vector2 &rSearchSpaceOffset,
const Vector2 &rSearchSpaceResolution,
kt_double searchAngleResolution, Matrix3 &rCovariance)
{
// reset covariance to identity matrix
rCovariance.SetToIdentity();
// if best response is vary small return max variance
if (bestResponse < KT_TOLERANCE)
{
rCovariance(0, 0) = MAX_VARIANCE; // XX
rCovariance(1, 1) = MAX_VARIANCE; // YY
rCovariance(2, 2) = 4 * math::Square(searchAngleResolution); // TH*TH
return;
}
kt_double accumulatedVarianceXX = 0;
kt_double accumulatedVarianceXY = 0;
kt_double accumulatedVarianceYY = 0;
kt_double norm = 0;
kt_double dx = rBestPose.GetX() - rSearchCenter.GetX();
kt_double dy = rBestPose.GetY() - rSearchCenter.GetY();
kt_double offsetX = rSearchSpaceOffset.GetX();
kt_double offsetY = rSearchSpaceOffset.GetY();
kt_int32u nX = static_cast(math::Round(offsetX * 2.0 / rSearchSpaceResolution.GetX()) + 1);
kt_double startX = -offsetX;
assert(math::DoubleEqual(startX + (nX - 1) * rSearchSpaceResolution.GetX(), -startX));
kt_int32u nY = static_cast(math::Round(offsetY * 2.0 / rSearchSpaceResolution.GetY()) + 1);
kt_double startY = -offsetY;
assert(math::DoubleEqual(startY + (nY - 1) * rSearchSpaceResolution.GetY(), -startY));
for (kt_int32u yIndex = 0; yIndex < nY; yIndex++)
{
kt_double y = startY + yIndex * rSearchSpaceResolution.GetY();
for (kt_int32u xIndex = 0; xIndex < nX; xIndex++)
{
kt_double x = startX + xIndex * rSearchSpaceResolution.GetX();
Vector2 gridPoint = m_pSearchSpaceProbs->WorldToGrid(Vector2(rSearchCenter.GetX() + x,
rSearchCenter.GetY() + y));
kt_double response = *(m_pSearchSpaceProbs->GetDataPointer(gridPoint));
// response is not a low response
if (response >= (bestResponse - 0.1))
{
norm += response;
accumulatedVarianceXX += (math::Square(x - dx) * response);
accumulatedVarianceXY += ((x - dx) * (y - dy) * response);
accumulatedVarianceYY += (math::Square(y - dy) * response);
}
}
}
if (norm > KT_TOLERANCE)
{
kt_double varianceXX = accumulatedVarianceXX / norm;
kt_double varianceXY = accumulatedVarianceXY / norm;
kt_double varianceYY = accumulatedVarianceYY / norm;
kt_double varianceTHTH = 4 * math::Square(searchAngleResolution);
// lower-bound variances so that they are not too small;
// ensures that links are not too tight
kt_double minVarianceXX = 0.1 * math::Square(rSearchSpaceResolution.GetX());
kt_double minVarianceYY = 0.1 * math::Square(rSearchSpaceResolution.GetY());
varianceXX = math::Maximum(varianceXX, minVarianceXX);
varianceYY = math::Maximum(varianceYY, minVarianceYY);
// increase variance for poorer responses
kt_double multiplier = 1.0 / bestResponse;
rCovariance(0, 0) = varianceXX * multiplier;
rCovariance(0, 1) = varianceXY * multiplier;
rCovariance(1, 0) = varianceXY * multiplier;
rCovariance(1, 1) = varianceYY * multiplier;
rCovariance(2, 2) = varianceTHTH; // this value will be set in ComputeAngularCovariance
}
// if values are 0, set to MAX_VARIANCE
// values might be 0 if points are too sparse and thus don't hit other points
if (math::DoubleEqual(rCovariance(0, 0), 0.0))
{
rCovariance(0, 0) = MAX_VARIANCE;
}
if (math::DoubleEqual(rCovariance(1, 1), 0.0))
{
rCovariance(1, 1) = MAX_VARIANCE;
}
}
/**
* 计算最佳姿态的角度协方差
* Computes the angular covariance of the best pose
* @param rBestPose
* @param bestResponse
* @param rSearchCenter
* @param rSearchAngleOffset
* @param searchAngleResolution
* @param rCovariance
*/
void ScanMatcher::ComputeAngularCovariance(const Pose2 &rBestPose,
kt_double bestResponse,
const Pose2 &rSearchCenter,
kt_double searchAngleOffset,
kt_double searchAngleResolution,
Matrix3 &rCovariance)
{
// NOTE: do not reset covariance matrix
// normalize angle difference
kt_double bestAngle = math::NormalizeAngleDifference(rBestPose.GetHeading(), rSearchCenter.GetHeading());
Vector2 gridPoint = m_pCorrelationGrid->WorldToGrid(rBestPose.GetPosition());
kt_int32s gridIndex = m_pCorrelationGrid->GridIndex(gridPoint);
kt_int32u nAngles = static_cast(math::Round(searchAngleOffset * 2 / searchAngleResolution) + 1);
kt_double angle = 0.0;
kt_double startAngle = rSearchCenter.GetHeading() - searchAngleOffset;
kt_double norm = 0.0;
kt_double accumulatedVarianceThTh = 0.0;
for (kt_int32u angleIndex = 0; angleIndex < nAngles; angleIndex++)
{
angle = startAngle + angleIndex * searchAngleResolution;
kt_double response = GetResponse(angleIndex, gridIndex);
// response is not a low response
if (response >= (bestResponse - 0.1))
{
norm += response;
accumulatedVarianceThTh += (math::Square(angle - bestAngle) * response);
}
}
assert(math::DoubleEqual(angle, rSearchCenter.GetHeading() + searchAngleOffset));
if (norm > KT_TOLERANCE)
{
if (accumulatedVarianceThTh < KT_TOLERANCE)
{
accumulatedVarianceThTh = math::Square(searchAngleResolution);
}
accumulatedVarianceThTh /= norm;
}
else
{
accumulatedVarianceThTh = 1000 * math::Square(searchAngleResolution);
}
rCovariance(2, 2) = accumulatedVarianceThTh;
}
/**
* 将扫描的点标记为占用在相关网格中
* Marks cells where scans' points hit as being occupied
* @param rScans scans whose points will mark cells in grid as being occupied
* @param viewPoint do not add points that belong to scans "opposite" the view point
*/
void ScanMatcher::AddScans(const LocalizedRangeScanVector &rScans, Vector2 viewPoint)
{
m_pCorrelationGrid->Clear();
// add all scans to grid
const_forEach(LocalizedRangeScanVector, &rScans)
{
AddScan(*iter, viewPoint);
}
}
/**
* 将单个扫描的点标记为占用在相关网格中,可以选择是否模糊点
* Marks cells where scans' points hit as being occupied. Can smear points as they are added.
* @param pScan scan whose points will mark cells in grid as being occupied
* @param viewPoint do not add points that belong to scans "opposite" the view point
* @param doSmear whether the points will be smeared
*/
void ScanMatcher::AddScan(LocalizedRangeScan *pScan, const Vector2 &rViewPoint, kt_bool doSmear)
{
PointVectorDouble validPoints = FindValidPoints(pScan, rViewPoint);
// put in all valid points
const_forEach(PointVectorDouble, &validPoints)
{
Vector2 gridPoint = m_pCorrelationGrid->WorldToGrid(*iter);
if (!math::IsUpTo(gridPoint.GetX(), m_pCorrelationGrid->GetROI().GetWidth()) ||
!math::IsUpTo(gridPoint.GetY(), m_pCorrelationGrid->GetROI().GetHeight()))
{
// point not in grid
continue;
}
int gridIndex = m_pCorrelationGrid->GridIndex(gridPoint);
// set grid cell as occupied
if (m_pCorrelationGrid->GetDataPointer()[gridIndex] == GridStates_Occupied)
{
// value already set
continue;
}
m_pCorrelationGrid->GetDataPointer()[gridIndex] = GridStates_Occupied;
// smear grid
if (doSmear == true)
{
m_pCorrelationGrid->SmearPoint(gridPoint);
}
}
}
/**
* 计算扫描中与给定视点在同一侧的点
* Compute which points in a scan are on the same side as the given viewpoint
* @param pScan
* @param rViewPoint
* @return points on the same side
*/
PointVectorDouble ScanMatcher::FindValidPoints(LocalizedRangeScan *pScan, const Vector2 &rViewPoint) const
{
const PointVectorDouble &rPointReadings = pScan->GetPointReadings();
// points must be at least 10 cm away when making comparisons of inside/outside of viewpoint
const kt_double minSquareDistance = math::Square(0.1); // in m^2
// this iterator lags from the main iterator adding points only when the points are on
// the same side as the viewpoint
PointVectorDouble::const_iterator trailingPointIter = rPointReadings.begin();
PointVectorDouble validPoints;
Vector2 firstPoint;
kt_bool firstTime = true;
const_forEach(PointVectorDouble, &rPointReadings)
{
Vector2 currentPoint = *iter;
if (firstTime && !std::isnan(currentPoint.GetX()) && !std::isnan(currentPoint.GetY()))
{
firstPoint = currentPoint;
firstTime = false;
}
Vector2 delta = firstPoint - currentPoint;
if (delta.SquaredLength() > minSquareDistance)
{
// This compute the Determinant (viewPoint FirstPoint, viewPoint currentPoint)
// Which computes the direction of rotation, if the rotation is counterclock
// wise then we are looking at data we should keep. If it's negative rotation
// we should not included in in the matching
// have enough distance, check viewpoint
double a = rViewPoint.GetY() - firstPoint.GetY();
double b = firstPoint.GetX() - rViewPoint.GetX();
double c = firstPoint.GetY() * rViewPoint.GetX() - firstPoint.GetX() * rViewPoint.GetY();
double ss = currentPoint.GetX() * a + currentPoint.GetY() * b + c;
// reset beginning point
firstPoint = currentPoint;
if (ss < 0.0) // wrong side, skip and keep going
{
trailingPointIter = iter;
}
else
{
for (; trailingPointIter != iter; ++trailingPointIter)
{
validPoints.push_back(*trailingPointIter);
}
}
}
}
return validPoints;
}
/**
* 获取在给定位置和旋转下的响应值
* Get response at given position for given rotation (only look up valid points)
* @param angleIndex 角度索引,表示当前的旋转角度在查找数组中的位置
* @param gridPositionIndex 当前位置在网格数组中的索引
* @return response 当前位置和角度的匹配响应值,范围为 [0,1]
*/
kt_double ScanMatcher::GetResponse(kt_int32u angleIndex, kt_int32s gridPositionIndex) const
{
kt_double response = 0.0;
// add up value for each point 将每个点的值相加
kt_int8u *pByte = m_pCorrelationGrid->GetDataPointer() + gridPositionIndex;
const LookupArray *pOffsets = m_pGridLookup->GetLookupArray(angleIndex);
assert(pOffsets != NULL);
// get number of points in offset list 获取偏移列表中的点数
kt_int32u nPoints = pOffsets->GetSize();
if (nPoints == 0)
{
return response;
}
// calculate response 计算 response
kt_int32s *pAngleIndexPointer = pOffsets->GetArrayPointer();
for (kt_int32u i = 0; i < nPoints; i++)
{
// ignore points that fall off the grid 忽略不在网格上的点
kt_int32s pointGridIndex = gridPositionIndex + pAngleIndexPointer[i];
if (!math::IsUpTo(pointGridIndex, m_pCorrelationGrid->GetDataSize()) || pAngleIndexPointer[i] == INVALID_SCAN)
{
continue;
}
// uses index offsets to efficiently find location of point in the grid
// 使用索引偏移来有效地找到网格中点的位置
response += pByte[pAngleIndexPointer[i]];
}
// normalize response
response /= (nPoints * GridStates_Occupied);
assert(fabs(response) <= 1.0);
return response;
}
////////////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////////////
MapperGraph::MapperGraph(Mapper *pMapper, kt_double rangeThreshold)
: m_pMapper(pMapper)
{
m_pLoopScanMatcher = ScanMatcher::Create(pMapper, m_pMapper->m_pLoopSearchSpaceDimension->GetValue(),
m_pMapper->m_pLoopSearchSpaceResolution->GetValue(),
m_pMapper->m_pLoopSearchSpaceSmearDeviation->GetValue(), rangeThreshold);
assert(m_pLoopScanMatcher);
m_pTraversal = new BreadthFirstTraversal(this);
}
MapperGraph::~MapperGraph()
{
delete m_pLoopScanMatcher;
m_pLoopScanMatcher = NULL;
delete m_pTraversal;
m_pTraversal = NULL;
}
void MapperGraph::AddVertex(LocalizedRangeScan *pScan)
{
assert(pScan);
if (pScan != NULL)
{
Vertex *pVertex = new Vertex(pScan);
Graph::AddVertex(pScan->GetSensorName(), pVertex);
if (m_pMapper->m_pScanOptimizer != NULL)
{
m_pMapper->m_pScanOptimizer->AddNode(pVertex);
}
}
}
void MapperGraph::AddEdges(LocalizedRangeScan *pScan, const Matrix3 &rCovariance)
{
MapperSensorManager *pSensorManager = m_pMapper->m_pMapperSensorManager;
const Name &rSensorName = pScan->GetSensorName();
// link to previous scan
kt_int32s previousScanNum = pScan->GetStateId() - 1;
if (pSensorManager->GetLastScan(rSensorName) != NULL)
{
assert(previousScanNum >= 0);
LinkScans(pSensorManager->GetScan(rSensorName, previousScanNum), pScan, pScan->GetSensorPose(), rCovariance);
}
Pose2Vector means;
std::vector covariances;
// first scan (link to first scan of other robots)
if (pSensorManager->GetLastScan(rSensorName) == NULL)
{
assert(pSensorManager->GetScans(rSensorName).size() == 1);
std::vector deviceNames = pSensorManager->GetSensorNames();
forEach(std::vector, &deviceNames)
{
const Name &rCandidateSensorName = *iter;
// skip if candidate device is the same or other device has no scans
if ((rCandidateSensorName == rSensorName) || (pSensorManager->GetScans(rCandidateSensorName).empty()))
{
continue;
}
Pose2 bestPose;
Matrix3 covariance;
kt_double response = m_pMapper->m_pSequentialScanMatcher->MatchScan(pScan,
pSensorManager->GetScans(rCandidateSensorName),
bestPose, covariance);
LinkScans(pSensorManager->GetScan(rCandidateSensorName, 0), pScan, bestPose, covariance);
// only add to means and covariances if response was high "enough"
if (response > m_pMapper->m_pLinkMatchMinimumResponseFine->GetValue())
{
means.push_back(bestPose);
covariances.push_back(covariance);
}
}
}
else
{
// link to running scans
Pose2 scanPose = pScan->GetSensorPose();
means.push_back(scanPose);
covariances.push_back(rCovariance);
LinkChainToScan(pSensorManager->GetRunningScans(rSensorName), pScan, scanPose, rCovariance);
}
// link to other near chains (chains that include new scan are invalid)
LinkNearChains(pScan, means, covariances);
if (!means.empty())
{
pScan->SetSensorPose(ComputeWeightedMean(means, covariances));
}
}
kt_bool MapperGraph::TryCloseLoop(LocalizedRangeScan *pScan, const Name &rSensorName)
{
kt_bool loopClosed = false;
kt_int32u scanIndex = 0;
LocalizedRangeScanVector candidateChain = FindPossibleLoopClosure(pScan, rSensorName, scanIndex);
while (!candidateChain.empty())
{
Pose2 bestPose;
Matrix3 covariance;
kt_double coarseResponse = m_pLoopScanMatcher->MatchScan(pScan, candidateChain,
bestPose, covariance, false, false);
std::stringstream stream;
stream << "COARSE RESPONSE: " << coarseResponse
<< " (> " << m_pMapper->m_pLoopMatchMinimumResponseCoarse->GetValue() << ")"
<< std::endl;
stream << " var: " << covariance(0, 0) << ", " << covariance(1, 1)
<< " (< " << m_pMapper->m_pLoopMatchMaximumVarianceCoarse->GetValue() << ")";
m_pMapper->FireLoopClosureCheck(stream.str());
if ((coarseResponse > m_pMapper->m_pLoopMatchMinimumResponseCoarse->GetValue()) &&
(covariance(0, 0) < m_pMapper->m_pLoopMatchMaximumVarianceCoarse->GetValue()) &&
(covariance(1, 1) < m_pMapper->m_pLoopMatchMaximumVarianceCoarse->GetValue()))
{
LocalizedRangeScan tmpScan(pScan->GetSensorName(), pScan->GetRangeReadingsVector());
tmpScan.SetUniqueId(pScan->GetUniqueId());
tmpScan.SetTime(pScan->GetTime());
tmpScan.SetStateId(pScan->GetStateId());
tmpScan.SetCorrectedPose(pScan->GetCorrectedPose());
tmpScan.SetSensorPose(bestPose); // This also updates OdometricPose.
kt_double fineResponse = m_pMapper->m_pSequentialScanMatcher->MatchScan(&tmpScan, candidateChain,
bestPose, covariance, false);
std::stringstream stream1;
stream1 << "FINE RESPONSE: " << fineResponse << " (>"
<< m_pMapper->m_pLoopMatchMinimumResponseFine->GetValue() << ")" << std::endl;
m_pMapper->FireLoopClosureCheck(stream1.str());
if (fineResponse < m_pMapper->m_pLoopMatchMinimumResponseFine->GetValue())
{
m_pMapper->FireLoopClosureCheck("REJECTED!");
}
else
{
m_pMapper->FireBeginLoopClosure("Closing loop...");
pScan->SetSensorPose(bestPose);
LinkChainToScan(candidateChain, pScan, bestPose, covariance);
CorrectPoses();
m_pMapper->FireEndLoopClosure("Loop closed!");
loopClosed = true;
}
}
candidateChain = FindPossibleLoopClosure(pScan, rSensorName, scanIndex);
}
return loopClosed;
}
LocalizedRangeScan *MapperGraph::GetClosestScanToPose(const LocalizedRangeScanVector &rScans,
const Pose2 &rPose) const
{
LocalizedRangeScan *pClosestScan = NULL;
kt_double bestSquaredDistance = DBL_MAX;
const_forEach(LocalizedRangeScanVector, &rScans)
{
Pose2 scanPose = (*iter)->GetReferencePose(m_pMapper->m_pUseScanBarycenter->GetValue());
kt_double squaredDistance = rPose.GetPosition().SquaredDistance(scanPose.GetPosition());
if (squaredDistance < bestSquaredDistance)
{
bestSquaredDistance = squaredDistance;
pClosestScan = *iter;
}
}
return pClosestScan;
}
Edge *MapperGraph::AddEdge(LocalizedRangeScan *pSourceScan,
LocalizedRangeScan *pTargetScan, kt_bool &rIsNewEdge)
{
// check that vertex exists
assert(pSourceScan->GetStateId() < (kt_int32s)m_Vertices[pSourceScan->GetSensorName()].size());
assert(pTargetScan->GetStateId() < (kt_int32s)m_Vertices[pTargetScan->GetSensorName()].size());
Vertex *v1 = m_Vertices[pSourceScan->GetSensorName()][pSourceScan->GetStateId()];
Vertex *v2 = m_Vertices[pTargetScan->GetSensorName()][pTargetScan->GetStateId()];
// see if edge already exists
const_forEach(std::vector *>, &(v1->GetEdges()))
{
Edge *pEdge = *iter;
if (pEdge->GetTarget() == v2)
{
rIsNewEdge = false;
return pEdge;
}
}
Edge *pEdge = new Edge(v1, v2);
Graph::AddEdge(pEdge);
rIsNewEdge = true;
return pEdge;
}
void MapperGraph::LinkScans(LocalizedRangeScan *pFromScan, LocalizedRangeScan *pToScan,
const Pose2 &rMean, const Matrix3 &rCovariance)
{
kt_bool isNewEdge = true;
Edge *pEdge = AddEdge(pFromScan, pToScan, isNewEdge);
// only attach link information if the edge is new
if (isNewEdge == true)
{
pEdge->SetLabel(new LinkInfo(pFromScan->GetSensorPose(), rMean, rCovariance));
if (m_pMapper->m_pScanOptimizer != NULL)
{
m_pMapper->m_pScanOptimizer->AddConstraint(pEdge);
}
}
}
void MapperGraph::LinkNearChains(LocalizedRangeScan *pScan, Pose2Vector &rMeans, std::vector &rCovariances)
{
const std::vector nearChains = FindNearChains(pScan);
const_forEach(std::vector, &nearChains)
{
if (iter->size() < m_pMapper->m_pLoopMatchMinimumChainSize->GetValue())
{
continue;
}
Pose2 mean;
Matrix3 covariance;
// match scan against "near" chain
kt_double response = m_pMapper->m_pSequentialScanMatcher->MatchScan(pScan, *iter, mean, covariance, false);
if (response > m_pMapper->m_pLinkMatchMinimumResponseFine->GetValue() - KT_TOLERANCE)
{
rMeans.push_back(mean);
rCovariances.push_back(covariance);
LinkChainToScan(*iter, pScan, mean, covariance);
}
}
}
void MapperGraph::LinkChainToScan(const LocalizedRangeScanVector &rChain, LocalizedRangeScan *pScan,
const Pose2 &rMean, const Matrix3 &rCovariance)
{
Pose2 pose = pScan->GetReferencePose(m_pMapper->m_pUseScanBarycenter->GetValue());
LocalizedRangeScan *pClosestScan = GetClosestScanToPose(rChain, pose);
assert(pClosestScan != NULL);
Pose2 closestScanPose = pClosestScan->GetReferencePose(m_pMapper->m_pUseScanBarycenter->GetValue());
kt_double squaredDistance = pose.GetPosition().SquaredDistance(closestScanPose.GetPosition());
if (squaredDistance < math::Square(m_pMapper->m_pLinkScanMaximumDistance->GetValue()) + KT_TOLERANCE)
{
LinkScans(pClosestScan, pScan, rMean, rCovariance);
}
}
std::vector MapperGraph::FindNearChains(LocalizedRangeScan *pScan)
{
std::vector nearChains;
Pose2 scanPose = pScan->GetReferencePose(m_pMapper->m_pUseScanBarycenter->GetValue());
// to keep track of which scans have been added to a chain
LocalizedRangeScanVector processed;
const LocalizedRangeScanVector nearLinkedScans = FindNearLinkedScans(pScan,
m_pMapper->m_pLinkScanMaximumDistance->GetValue());
const_forEach(LocalizedRangeScanVector, &nearLinkedScans)
{
LocalizedRangeScan *pNearScan = *iter;
if (pNearScan == pScan)
{
continue;
}
// scan has already been processed, skip
if (find(processed.begin(), processed.end(), pNearScan) != processed.end())
{
continue;
}
processed.push_back(pNearScan);
// build up chain
kt_bool isValidChain = true;
std::list chain;
// add scans before current scan being processed
for (kt_int32s candidateScanNum = pNearScan->GetStateId() - 1; candidateScanNum >= 0; candidateScanNum--)
{
LocalizedRangeScan *pCandidateScan = m_pMapper->m_pMapperSensorManager->GetScan(pNearScan->GetSensorName(),
candidateScanNum);
// chain is invalid--contains scan being added
if (pCandidateScan == pScan)
{
isValidChain = false;
}
Pose2 candidatePose = pCandidateScan->GetReferencePose(m_pMapper->m_pUseScanBarycenter->GetValue());
kt_double squaredDistance = scanPose.GetPosition().SquaredDistance(candidatePose.GetPosition());
if (squaredDistance < math::Square(m_pMapper->m_pLinkScanMaximumDistance->GetValue()) + KT_TOLERANCE)
{
chain.push_front(pCandidateScan);
processed.push_back(pCandidateScan);
}
else
{
break;
}
}
chain.push_back(pNearScan);
// add scans after current scan being processed
kt_int32u end = static_cast(m_pMapper->m_pMapperSensorManager->GetScans(pNearScan->GetSensorName()).size());
for (kt_int32u candidateScanNum = pNearScan->GetStateId() + 1; candidateScanNum < end; candidateScanNum++)
{
LocalizedRangeScan *pCandidateScan = m_pMapper->m_pMapperSensorManager->GetScan(pNearScan->GetSensorName(),
candidateScanNum);
if (pCandidateScan == pScan)
{
isValidChain = false;
}
Pose2 candidatePose = pCandidateScan->GetReferencePose(m_pMapper->m_pUseScanBarycenter->GetValue());
;
kt_double squaredDistance = scanPose.GetPosition().SquaredDistance(candidatePose.GetPosition());
if (squaredDistance < math::Square(m_pMapper->m_pLinkScanMaximumDistance->GetValue()) + KT_TOLERANCE)
{
chain.push_back(pCandidateScan);
processed.push_back(pCandidateScan);
}
else
{
break;
}
}
if (isValidChain)
{
// change list to vector
LocalizedRangeScanVector tempChain;
std::copy(chain.begin(), chain.end(), std::inserter(tempChain, tempChain.begin()));
// add chain to collection
nearChains.push_back(tempChain);
}
}
return nearChains;
}
LocalizedRangeScanVector MapperGraph::FindNearLinkedScans(LocalizedRangeScan *pScan, kt_double maxDistance)
{
NearScanVisitor *pVisitor = new NearScanVisitor(pScan, maxDistance, m_pMapper->m_pUseScanBarycenter->GetValue());
LocalizedRangeScanVector nearLinkedScans = m_pTraversal->Traverse(GetVertex(pScan), pVisitor);
delete pVisitor;
return nearLinkedScans;
}
Pose2 MapperGraph::ComputeWeightedMean(const Pose2Vector &rMeans, const std::vector &rCovariances) const
{
assert(rMeans.size() == rCovariances.size());
// compute sum of inverses and create inverse list
std::vector inverses;
inverses.reserve(rCovariances.size());
Matrix3 sumOfInverses;
const_forEach(std::vector, &rCovariances)
{
Matrix3 inverse = iter->Inverse();
inverses.push_back(inverse);
sumOfInverses += inverse;
}
Matrix3 inverseOfSumOfInverses = sumOfInverses.Inverse();
// compute weighted mean
Pose2 accumulatedPose;
kt_double thetaX = 0.0;
kt_double thetaY = 0.0;
Pose2Vector::const_iterator meansIter = rMeans.begin();
const_forEach(std::vector, &inverses)
{
Pose2 pose = *meansIter;
kt_double angle = pose.GetHeading();
thetaX += cos(angle);
thetaY += sin(angle);
Matrix3 weight = inverseOfSumOfInverses * (*iter);
accumulatedPose += weight * pose;
++meansIter;
}
thetaX /= rMeans.size();
thetaY /= rMeans.size();
accumulatedPose.SetHeading(atan2(thetaY, thetaX));
return accumulatedPose;
}
LocalizedRangeScanVector MapperGraph::FindPossibleLoopClosure(LocalizedRangeScan *pScan,
const Name &rSensorName,
kt_int32u &rStartNum)
{
LocalizedRangeScanVector chain; // return value
Pose2 pose = pScan->GetReferencePose(m_pMapper->m_pUseScanBarycenter->GetValue());
// possible loop closure chain should not include close scans that have a
// path of links to the scan of interest
const LocalizedRangeScanVector nearLinkedScans =
FindNearLinkedScans(pScan, m_pMapper->m_pLoopSearchMaximumDistance->GetValue());
kt_int32u nScans = static_cast(m_pMapper->m_pMapperSensorManager->GetScans(rSensorName).size());
for (; rStartNum < nScans; rStartNum++)
{
LocalizedRangeScan *pCandidateScan = m_pMapper->m_pMapperSensorManager->GetScan(rSensorName, rStartNum);
Pose2 candidateScanPose = pCandidateScan->GetReferencePose(m_pMapper->m_pUseScanBarycenter->GetValue());
kt_double squaredDistance = candidateScanPose.GetPosition().SquaredDistance(pose.GetPosition());
if (squaredDistance < math::Square(m_pMapper->m_pLoopSearchMaximumDistance->GetValue()) + KT_TOLERANCE)
{
// a linked scan cannot be in the chain
if (find(nearLinkedScans.begin(), nearLinkedScans.end(), pCandidateScan) != nearLinkedScans.end())
{
chain.clear();
}
else
{
chain.push_back(pCandidateScan);
}
}
else
{
// return chain if it is long "enough"
if (chain.size() >= m_pMapper->m_pLoopMatchMinimumChainSize->GetValue())
{
return chain;
}
else
{
chain.clear();
}
}
}
return chain;
}
void MapperGraph::CorrectPoses()
{
// optimize scans!
ScanSolver *pSolver = m_pMapper->m_pScanOptimizer;
if (pSolver != NULL)
{
pSolver->Compute();
const_forEach(ScanSolver::IdPoseVector, &pSolver->GetCorrections())
{
m_pMapper->m_pMapperSensorManager->GetScan(iter->first)->SetSensorPose(iter->second);
}
pSolver->Clear();
}
}
////////////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////////////
/**
* Default constructor
*/
Mapper::Mapper()
: Module("Mapper"), m_Initialized(false), m_pSequentialScanMatcher(NULL), m_pMapperSensorManager(NULL), m_pGraph(NULL), m_pScanOptimizer(NULL)
{
InitializeParameters();
}
/**
* Default constructor
*/
Mapper::Mapper(const std::string &rName)
: Module(rName), m_Initialized(false), m_pSequentialScanMatcher(NULL), m_pMapperSensorManager(NULL), m_pGraph(NULL), m_pScanOptimizer(NULL)
{
InitializeParameters();
}
/**
* Destructor
*/
Mapper::~Mapper()
{
Reset();
delete m_pMapperSensorManager;
}
void Mapper::InitializeParameters()
{
m_pUseScanMatching = new Parameter(
"UseScanMatching",
"When set to true, the mapper will use a scan matching algorithm. "
"In most real-world situations this should be set to true so that the "
"mapper algorithm can correct for noise and errors in odometry and "
"scan data. In some simulator environments where the simulated scan "
"and odometry data are very accurate, the scan matching algorithm can "
"produce worse results. In those cases set this to false to improve "
"results.",
true,
GetParameterManager());
m_pUseScanBarycenter = new Parameter(
"UseScanBarycenter",
"Use the barycenter of scan endpoints to define distances between "
"scans.",
true, GetParameterManager());
m_pMinimumTimeInterval = new Parameter(
"MinimumTimeInterval",
"Sets the minimum time between scans. If a new scan's time stamp is "
"longer than MinimumTimeInterval from the previously processed scan, "
"the mapper will use the data from the new scan. Otherwise, it will "
"discard the new scan if it also does not meet the minimum travel "
"distance and heading requirements. For performance reasons, it is "
"generally it is a good idea to only process scans if a reasonable "
"amount of time has passed. This parameter is particularly useful "
"when there is a need to process scans while the robot is stationary.",
3600, GetParameterManager());
m_pMinimumTravelDistance = new Parameter(
"MinimumTravelDistance",
"Sets the minimum travel between scans. If a new scan's position is "
"more than minimumTravelDistance from the previous scan, the mapper "
"will use the data from the new scan. Otherwise, it will discard the "
"new scan if it also does not meet the minimum change in heading "
"requirement. For performance reasons, generally it is a good idea to "
"only process scans if the robot has moved a reasonable amount.",
0.2, GetParameterManager());
m_pMinimumTravelHeading = new Parameter(
"MinimumTravelHeading",
"Sets the minimum heading change between scans. If a new scan's "
"heading is more than MinimumTravelHeading from the previous scan, the "
"mapper will use the data from the new scan. Otherwise, it will "
"discard the new scan if it also does not meet the minimum travel "
"distance requirement. For performance reasons, generally it is a good "
"idea to only process scans if the robot has moved a reasonable "
"amount.",
math::DegreesToRadians(10), GetParameterManager());
m_pScanBufferSize = new Parameter(
"ScanBufferSize",
"Scan buffer size is the length of the scan chain stored for scan "
"matching. \"ScanBufferSize\" should be set to approximately "
"\"ScanBufferMaximumScanDistance\" / \"MinimumTravelDistance\". The "
"idea is to get an area approximately 20 meters long for scan "
"matching. For example, if we add scans every MinimumTravelDistance == "
"0.3 meters, then \"scanBufferSize\" should be 20 / 0.3 = 67.)",
70, GetParameterManager());
m_pScanBufferMaximumScanDistance = new Parameter(
"ScanBufferMaximumScanDistance",
"Scan buffer maximum scan distance is the maximum distance between the "
"first and last scans in the scan chain stored for matching.",
20.0, GetParameterManager());
m_pLinkMatchMinimumResponseFine = new Parameter(
"LinkMatchMinimumResponseFine",
"Scans are linked only if the correlation response value is greater "
"than this value.",
0.8, GetParameterManager());
m_pLinkScanMaximumDistance = new Parameter(
"LinkScanMaximumDistance",
"Maximum distance between linked scans. Scans that are farther apart "
"will not be linked regardless of the correlation response value.",
10.0, GetParameterManager());
m_pLoopSearchMaximumDistance = new Parameter(
"LoopSearchMaximumDistance",
"Scans less than this distance from the current position will be "
"considered for a match in loop closure.",
4.0, GetParameterManager());
m_pDoLoopClosing = new Parameter(
"DoLoopClosing",
"Enable/disable loop closure.",
true, GetParameterManager());
m_pLoopMatchMinimumChainSize = new Parameter(
"LoopMatchMinimumChainSize",
"When the loop closure detection finds a candidate it must be part of "
"a large set of linked scans. If the chain of scans is less than this "
"value we do not attempt to close the loop.",
10, GetParameterManager());
m_pLoopMatchMaximumVarianceCoarse = new Parameter(
"LoopMatchMaximumVarianceCoarse",
"The co-variance values for a possible loop closure have to be less "
"than this value to consider a viable solution. This applies to the "
"coarse search.",
math::Square(0.4), GetParameterManager());
m_pLoopMatchMinimumResponseCoarse = new Parameter(
"LoopMatchMinimumResponseCoarse",
"If response is larger then this, then initiate loop closure search at "
"the coarse resolution.",
0.8, GetParameterManager());
m_pLoopMatchMinimumResponseFine = new Parameter(
"LoopMatchMinimumResponseFine",
"If response is larger then this, then initiate loop closure search at "
"the fine resolution.",
0.8, GetParameterManager());
//////////////////////////////////////////////////////////////////////////////
// CorrelationParameters correlationParameters;
m_pCorrelationSearchSpaceDimension = new Parameter(
"CorrelationSearchSpaceDimension",
"The size of the search grid used by the matcher. The search grid will "
"have the size CorrelationSearchSpaceDimension * "
"CorrelationSearchSpaceDimension",
0.3, GetParameterManager());
m_pCorrelationSearchSpaceResolution = new Parameter(
"CorrelationSearchSpaceResolution",
"The resolution (size of a grid cell) of the correlation grid.",
0.01, GetParameterManager());
m_pCorrelationSearchSpaceSmearDeviation = new Parameter(
"CorrelationSearchSpaceSmearDeviation",
"The point readings are smeared by this value in X and Y to create a "
"smoother response.",
0.03, GetParameterManager());
//////////////////////////////////////////////////////////////////////////////
// CorrelationParameters loopCorrelationParameters;
m_pLoopSearchSpaceDimension = new Parameter(
"LoopSearchSpaceDimension",
"The size of the search grid used by the matcher.",
8.0, GetParameterManager());
m_pLoopSearchSpaceResolution = new Parameter(
"LoopSearchSpaceResolution",
"The resolution (size of a grid cell) of the correlation grid.",
0.05, GetParameterManager());
m_pLoopSearchSpaceSmearDeviation = new Parameter(
"LoopSearchSpaceSmearDeviation",
"The point readings are smeared by this value in X and Y to create a "
"smoother response.",
0.03, GetParameterManager());
//////////////////////////////////////////////////////////////////////////////
// ScanMatcherParameters;
m_pDistanceVariancePenalty = new Parameter(
"DistanceVariancePenalty",
"Variance of penalty for deviating from odometry when scan-matching. "
"The penalty is a multiplier (less than 1.0) is a function of the "
"delta of the scan position being tested and the odometric pose.",
math::Square(0.3), GetParameterManager());
m_pAngleVariancePenalty = new Parameter(
"AngleVariancePenalty",
"See DistanceVariancePenalty.",
math::Square(math::DegreesToRadians(20)), GetParameterManager());
m_pFineSearchAngleOffset = new Parameter(
"FineSearchAngleOffset",
"The range of angles to search during a fine search.",
math::DegreesToRadians(0.2), GetParameterManager());
m_pCoarseSearchAngleOffset = new Parameter(
"CoarseSearchAngleOffset",
"The range of angles to search during a coarse search.",
math::DegreesToRadians(20), GetParameterManager());
m_pCoarseAngleResolution = new Parameter(
"CoarseAngleResolution",
"Resolution of angles to search during a coarse search.",
math::DegreesToRadians(2), GetParameterManager());
m_pMinimumAnglePenalty = new Parameter(
"MinimumAnglePenalty",
"Minimum value of the angle penalty multiplier so scores do not become "
"too small.",
0.9, GetParameterManager());
m_pMinimumDistancePenalty = new Parameter(
"MinimumDistancePenalty",
"Minimum value of the distance penalty multiplier so scores do not "
"become too small.",
0.5, GetParameterManager());
m_pUseResponseExpansion = new Parameter(
"UseResponseExpansion",
"Whether to increase the search space if no good matches are initially "
"found.",
false, GetParameterManager());
}
/* Adding in getters and setters here for easy parameter access */
// General Parameters
bool Mapper::getParamUseScanMatching()
{
return static_cast(m_pUseScanMatching->GetValue());
}
bool Mapper::getParamUseScanBarycenter()
{
return static_cast(m_pUseScanBarycenter->GetValue());
}
double Mapper::getParamMinimumTimeInterval()
{
return static_cast(m_pMinimumTimeInterval->GetValue());
}
double Mapper::getParamMinimumTravelDistance()
{
return static_cast(m_pMinimumTravelDistance->GetValue());
}
double Mapper::getParamMinimumTravelHeading()
{
return math::RadiansToDegrees(static_cast(m_pMinimumTravelHeading->GetValue()));
}
int Mapper::getParamScanBufferSize()
{
return static_cast(m_pScanBufferSize->GetValue());
}
double Mapper::getParamScanBufferMaximumScanDistance()
{
return static_cast(m_pScanBufferMaximumScanDistance->GetValue());
}
double Mapper::getParamLinkMatchMinimumResponseFine()
{
return static_cast(m_pLinkMatchMinimumResponseFine->GetValue());
}
double Mapper::getParamLinkScanMaximumDistance()
{
return static_cast(m_pLinkScanMaximumDistance->GetValue());
}
double Mapper::getParamLoopSearchMaximumDistance()
{
return static_cast(m_pLoopSearchMaximumDistance->GetValue());
}
bool Mapper::getParamDoLoopClosing()
{
return static_cast(m_pDoLoopClosing->GetValue());
}
int Mapper::getParamLoopMatchMinimumChainSize()
{
return static_cast(m_pLoopMatchMinimumChainSize->GetValue());
}
double Mapper::getParamLoopMatchMaximumVarianceCoarse()
{
return static_cast(std::sqrt(m_pLoopMatchMaximumVarianceCoarse->GetValue()));
}
double Mapper::getParamLoopMatchMinimumResponseCoarse()
{
return static_cast(m_pLoopMatchMinimumResponseCoarse->GetValue());
}
double Mapper::getParamLoopMatchMinimumResponseFine()
{
return static_cast(m_pLoopMatchMinimumResponseFine->GetValue());
}
// Correlation Parameters - Correlation Parameters
double Mapper::getParamCorrelationSearchSpaceDimension()
{
return static_cast(m_pCorrelationSearchSpaceDimension->GetValue());
}
double Mapper::getParamCorrelationSearchSpaceResolution()
{
return static_cast(m_pCorrelationSearchSpaceResolution->GetValue());
}
double Mapper::getParamCorrelationSearchSpaceSmearDeviation()
{
return static_cast(m_pCorrelationSearchSpaceSmearDeviation->GetValue());
}
// Correlation Parameters - Loop Correlation Parameters
double Mapper::getParamLoopSearchSpaceDimension()
{
return static_cast(m_pLoopSearchSpaceDimension->GetValue());
}
double Mapper::getParamLoopSearchSpaceResolution()
{
return static_cast(m_pLoopSearchSpaceResolution->GetValue());
}
double Mapper::getParamLoopSearchSpaceSmearDeviation()
{
return static_cast(m_pLoopSearchSpaceSmearDeviation->GetValue());
}
// ScanMatcher Parameters
double Mapper::getParamDistanceVariancePenalty()
{
return std::sqrt(static_cast(m_pDistanceVariancePenalty->GetValue()));
}
double Mapper::getParamAngleVariancePenalty()
{
return std::sqrt(static_cast(m_pAngleVariancePenalty->GetValue()));
}
double Mapper::getParamFineSearchAngleOffset()
{
return static_cast(m_pFineSearchAngleOffset->GetValue());
}
double Mapper::getParamCoarseSearchAngleOffset()
{
return static_cast(m_pCoarseSearchAngleOffset->GetValue());
}
double Mapper::getParamCoarseAngleResolution()
{
return static_cast(m_pCoarseAngleResolution->GetValue());
}
double Mapper::getParamMinimumAnglePenalty()
{
return static_cast(m_pMinimumAnglePenalty->GetValue());
}
double Mapper::getParamMinimumDistancePenalty()
{
return static_cast(m_pMinimumDistancePenalty->GetValue());
}
bool Mapper::getParamUseResponseExpansion()
{
return static_cast(m_pUseResponseExpansion->GetValue());
}
/* Setters for parameters */
// General Parameters
void Mapper::setParamUseScanMatching(bool b)
{
m_pUseScanMatching->SetValue((kt_bool)b);
}
void Mapper::setParamUseScanBarycenter(bool b)
{
m_pUseScanBarycenter->SetValue((kt_bool)b);
}
void Mapper::setParamMinimumTimeInterval(double d)
{
m_pMinimumTimeInterval->SetValue((kt_double)d);
}
void Mapper::setParamMinimumTravelDistance(double d)
{
m_pMinimumTravelDistance->SetValue((kt_double)d);
}
void Mapper::setParamMinimumTravelHeading(double d)
{
m_pMinimumTravelHeading->SetValue((kt_double)d);
}
void Mapper::setParamScanBufferSize(int i)
{
m_pScanBufferSize->SetValue((kt_int32u)i);
}
void Mapper::setParamScanBufferMaximumScanDistance(double d)
{
m_pScanBufferMaximumScanDistance->SetValue((kt_double)d);
}
void Mapper::setParamLinkMatchMinimumResponseFine(double d)
{
m_pLinkMatchMinimumResponseFine->SetValue((kt_double)d);
}
void Mapper::setParamLinkScanMaximumDistance(double d)
{
m_pLinkScanMaximumDistance->SetValue((kt_double)d);
}
void Mapper::setParamLoopSearchMaximumDistance(double d)
{
m_pLoopSearchMaximumDistance->SetValue((kt_double)d);
}
void Mapper::setParamDoLoopClosing(bool b)
{
m_pDoLoopClosing->SetValue((kt_bool)b);
}
void Mapper::setParamLoopMatchMinimumChainSize(int i)
{
m_pLoopMatchMinimumChainSize->SetValue((kt_int32u)i);
}
void Mapper::setParamLoopMatchMaximumVarianceCoarse(double d)
{
m_pLoopMatchMaximumVarianceCoarse->SetValue((kt_double)math::Square(d));
}
void Mapper::setParamLoopMatchMinimumResponseCoarse(double d)
{
m_pLoopMatchMinimumResponseCoarse->SetValue((kt_double)d);
}
void Mapper::setParamLoopMatchMinimumResponseFine(double d)
{
m_pLoopMatchMinimumResponseFine->SetValue((kt_double)d);
}
// Correlation Parameters - Correlation Parameters
void Mapper::setParamCorrelationSearchSpaceDimension(double d)
{
m_pCorrelationSearchSpaceDimension->SetValue((kt_double)d);
}
void Mapper::setParamCorrelationSearchSpaceResolution(double d)
{
m_pCorrelationSearchSpaceResolution->SetValue((kt_double)d);
}
void Mapper::setParamCorrelationSearchSpaceSmearDeviation(double d)
{
m_pCorrelationSearchSpaceSmearDeviation->SetValue((kt_double)d);
}
// Correlation Parameters - Loop Closure Parameters
void Mapper::setParamLoopSearchSpaceDimension(double d)
{
m_pLoopSearchSpaceDimension->SetValue((kt_double)d);
}
void Mapper::setParamLoopSearchSpaceResolution(double d)
{
m_pLoopSearchSpaceResolution->SetValue((kt_double)d);
}
void Mapper::setParamLoopSearchSpaceSmearDeviation(double d)
{
m_pLoopSearchSpaceSmearDeviation->SetValue((kt_double)d);
}
// Scan Matcher Parameters
void Mapper::setParamDistanceVariancePenalty(double d)
{
m_pDistanceVariancePenalty->SetValue((kt_double)math::Square(d));
}
void Mapper::setParamAngleVariancePenalty(double d)
{
m_pAngleVariancePenalty->SetValue((kt_double)math::Square(d));
}
void Mapper::setParamFineSearchAngleOffset(double d)
{
m_pFineSearchAngleOffset->SetValue((kt_double)d);
}
void Mapper::setParamCoarseSearchAngleOffset(double d)
{
m_pCoarseSearchAngleOffset->SetValue((kt_double)d);
}
void Mapper::setParamCoarseAngleResolution(double d)
{
m_pCoarseAngleResolution->SetValue((kt_double)d);
}
void Mapper::setParamMinimumAnglePenalty(double d)
{
m_pMinimumAnglePenalty->SetValue((kt_double)d);
}
void Mapper::setParamMinimumDistancePenalty(double d)
{
m_pMinimumDistancePenalty->SetValue((kt_double)d);
}
void Mapper::setParamUseResponseExpansion(bool b)
{
m_pUseResponseExpansion->SetValue((kt_bool)b);
}
void Mapper::Initialize(kt_double rangeThreshold)
{
if (m_Initialized == false)
{
// create sequential scan and loop matcher
m_pSequentialScanMatcher = ScanMatcher::Create(this,
m_pCorrelationSearchSpaceDimension->GetValue(),
m_pCorrelationSearchSpaceResolution->GetValue(),
m_pCorrelationSearchSpaceSmearDeviation->GetValue(),
rangeThreshold);
assert(m_pSequentialScanMatcher);
m_pMapperSensorManager = new MapperSensorManager(m_pScanBufferSize->GetValue(),
m_pScanBufferMaximumScanDistance->GetValue());
m_pGraph = new MapperGraph(this, rangeThreshold);
m_Initialized = true;
}
}
void Mapper::Reset()
{
delete m_pSequentialScanMatcher;
m_pSequentialScanMatcher = NULL;
delete m_pGraph;
m_pGraph = NULL;
delete m_pMapperSensorManager;
m_pMapperSensorManager = NULL;
m_Initialized = false;
}
kt_bool Mapper::Process(Object * /*pObject*/)
{
return true;
}
kt_bool Mapper::Process(LocalizedRangeScan *pScan)
{
if (pScan != NULL)
{
karto::LaserRangeFinder *pLaserRangeFinder = pScan->GetLaserRangeFinder();
// validate scan
if (pLaserRangeFinder == NULL || pScan == NULL || pLaserRangeFinder->Validate(pScan) == false)
{
// std::cout << "validate scan false !!" << std::endl;
return false;
}
if (m_Initialized == false)
{
// initialize mapper with range threshold from device
Initialize(pLaserRangeFinder->GetRangeThreshold());
}
// get last scan
LocalizedRangeScan *pLastScan = m_pMapperSensorManager->GetLastScan(pScan->GetSensorName());
// update scans corrected pose based on last correction
if (pLastScan != NULL)
{
Transform lastTransform(pLastScan->GetOdometricPose(), pLastScan->GetCorrectedPose());
pScan->SetCorrectedPose(lastTransform.TransformPose(pScan->GetOdometricPose()));
}
// test if scan is outside minimum boundary or if heading is larger then minimum heading
if (!HasMovedEnough(pScan, pLastScan))
{
// std::cout << "!HasMovedEnough !! return false" << std::endl;
return false;
}
Matrix3 covariance;
covariance.SetToIdentity();
// correct scan (if not first scan)
if (m_pUseScanMatching->GetValue() && pLastScan != NULL)
{
Pose2 bestPose;
m_pSequentialScanMatcher->MatchScan(pScan,
m_pMapperSensorManager->GetRunningScans(pScan->GetSensorName()),
bestPose,
covariance);
pScan->SetSensorPose(bestPose);
}
// add scan to buffer and assign id
m_pMapperSensorManager->AddScan(pScan);
if (m_pUseScanMatching->GetValue())
{
// add to graph
m_pGraph->AddVertex(pScan);
m_pGraph->AddEdges(pScan, covariance);
m_pMapperSensorManager->AddRunningScan(pScan);
if (m_pDoLoopClosing->GetValue())
{
std::vector deviceNames = m_pMapperSensorManager->GetSensorNames();
const_forEach(std::vector, &deviceNames)
{
m_pGraph->TryCloseLoop(pScan, *iter);
}
}
}
m_pMapperSensorManager->SetLastScan(pScan);
return true;
}
return false;
}
/**
* Is the scan sufficiently far from the last scan?
* @param pScan
* @param pLastScan
* @return true if the scans are sufficiently far
*/
kt_bool Mapper::HasMovedEnough(LocalizedRangeScan *pScan, LocalizedRangeScan *pLastScan) const
{
// test if first scan
if (pLastScan == NULL)
{
return true;
}
// test if enough time has passed
kt_double timeInterval = pScan->GetTime() - pLastScan->GetTime();
if (timeInterval >= m_pMinimumTimeInterval->GetValue())
{
return true;
}
Pose2 lastScannerPose = pLastScan->GetSensorAt(pLastScan->GetOdometricPose());
Pose2 scannerPose = pScan->GetSensorAt(pScan->GetOdometricPose());
// test if we have turned enough
kt_double deltaHeading = math::NormalizeAngle(scannerPose.GetHeading() - lastScannerPose.GetHeading());
if (fabs(deltaHeading) >= m_pMinimumTravelHeading->GetValue())
{
return true;
}
// test if we have moved enough
kt_double squaredTravelDistance = lastScannerPose.GetPosition().SquaredDistance(scannerPose.GetPosition());
if (squaredTravelDistance >= math::Square(m_pMinimumTravelDistance->GetValue()) - KT_TOLERANCE)
{
return true;
}
// std::cout << " deltaHeading = " << deltaHeading << std::endl;
// std::cout << "squaredTravelDistance = " << squaredTravelDistance << std::endl;
return false;
}
/**
* Gets all the processed scans
* @return all scans
*/
const LocalizedRangeScanVector Mapper::GetAllProcessedScans() const
{
LocalizedRangeScanVector allScans;
if (m_pMapperSensorManager != NULL)
{
allScans = m_pMapperSensorManager->GetAllScans();
}
return allScans;
}
/**
* Adds a listener
* @param pListener
*/
void Mapper::AddListener(MapperListener *pListener)
{
m_Listeners.push_back(pListener);
}
/**
* Removes a listener
* @param pListener
*/
void Mapper::RemoveListener(MapperListener *pListener)
{
std::vector::iterator iter = std::find(m_Listeners.begin(), m_Listeners.end(), pListener);
if (iter != m_Listeners.end())
{
m_Listeners.erase(iter);
}
}
void Mapper::FireInfo(const std::string &rInfo) const
{
const_forEach(std::vector, &m_Listeners)
{
(*iter)->Info(rInfo);
}
}
void Mapper::FireDebug(const std::string &rInfo) const
{
const_forEach(std::vector, &m_Listeners)
{
MapperDebugListener *pListener = dynamic_cast(*iter);
if (pListener != NULL)
{
pListener->Debug(rInfo);
}
}
}
void Mapper::FireLoopClosureCheck(const std::string &rInfo) const
{
const_forEach(std::vector, &m_Listeners)
{
MapperLoopClosureListener *pListener = dynamic_cast(*iter);
if (pListener != NULL)
{
pListener->LoopClosureCheck(rInfo);
}
}
}
void Mapper::FireBeginLoopClosure(const std::string &rInfo) const
{
const_forEach(std::vector, &m_Listeners)
{
MapperLoopClosureListener *pListener = dynamic_cast(*iter);
if (pListener != NULL)
{
pListener->BeginLoopClosure(rInfo);
}
}
}
void Mapper::FireEndLoopClosure(const std::string &rInfo) const
{
const_forEach(std::vector, &m_Listeners)
{
MapperLoopClosureListener *pListener = dynamic_cast(*iter);
if (pListener != NULL)
{
pListener->EndLoopClosure(rInfo);
}
}
}
void Mapper::SetScanSolver(ScanSolver *pScanOptimizer)
{
m_pScanOptimizer = pScanOptimizer;
}
MapperGraph *Mapper::GetGraph() const
{
return m_pGraph;
}
ScanMatcher *Mapper::GetSequentialScanMatcher() const
{
return m_pSequentialScanMatcher;
}
ScanMatcher *Mapper::GetLoopScanMatcher() const
{
return m_pGraph->GetLoopScanMatcher();
}
} // namespace karto