generate_problem.py 928 B

123456789101112131415161718192021222324252627282930313233343536
  1. import numpy as np
  2. from scipy import sparse
  3. import utils.codegen_utils as cu
  4. P = sparse.diags([1., 0.], format='csc')
  5. q = np.array([1., -1.])
  6. A12 = sparse.csc_matrix([[1., 1.], [1., 0.], [0., 1.]])
  7. A34 = sparse.csc_matrix([[1., 0.], [1., 0.], [0., 1.]])
  8. l = np.array([0., 1., 1.])
  9. u1 = np.array([5., 3., 3.])
  10. u2 = np.array([0., 3., 3.])
  11. u3 = np.array([2., 3., np.inf])
  12. u4 = np.array([0., 3., np.inf])
  13. # Generate problem solutions
  14. data = {'P': P,
  15. 'q': q,
  16. 'A12': A12,
  17. 'A34': A34,
  18. 'l': l,
  19. 'u1': u1,
  20. 'u2': u2,
  21. 'u3': u3,
  22. 'u4': u4,
  23. 'x1': np.array([1., 3.]),
  24. 'y1': np.array([0., -2., 1.]),
  25. 'obj_value1': -1.5,
  26. 'status1': 'optimal',
  27. 'status2': 'primal_infeasible',
  28. 'status3': 'dual_infeasible',
  29. 'status4': 'primal_infeasible'
  30. }
  31. # Generate problem data
  32. cu.generate_data('primal_dual_infeasibility', data)