|
@@ -6,84 +6,547 @@
|
|
|
#include <hdl_graph_slam/ros_utils.hpp>
|
|
|
#include <functional> // std::bind 和 std::placeholders
|
|
|
|
|
|
+#include <hdl_graph_slam/keyframe_updater.hpp>
|
|
|
+#include "hdl_graph_slam/keyframe_updater.hpp"
|
|
|
+#include <visualization_msgs/MarkerArray.h>
|
|
|
|
|
|
+#include <glog/logging.h>
|
|
|
+
|
|
|
+hdl_backend* instance = nullptr; // 初始化静态单例(分配内存, 调用hdl_backend 的默认构造函数)
|
|
|
+// hdl_backend& hdl_opt = hdl_backend::getInstance(); // 因为 静态成员变量 instance 是私有的,需要 静态成员函数 getInstance() 拿到 instance, 并且起个别名(引用)
|
|
|
+
|
|
|
+typedef pcl::PointXYZI PointT;
|
|
|
|
|
|
int main(int argc, char* argv[]) {
|
|
|
// 执行 ros 节点初始化
|
|
|
ros::init(argc, argv, "hdl_backend");
|
|
|
-
|
|
|
+ std::cout << "hdl backend get in ...===============" << std::endl;
|
|
|
+ instance = new hdl_backend();
|
|
|
+ // hdl_backend& hdl_opt = instance->getInstance();
|
|
|
+ instance->init();
|
|
|
return 0;
|
|
|
}
|
|
|
|
|
|
void hdl_backend::init() {
|
|
|
map_frame_id = "map";
|
|
|
- map_cloud_resolution = "0.05"; // 地图点云分辨率
|
|
|
- trans_odom2map.setIdentity(); // 设置为单位矩阵
|
|
|
+ // map_frame_id = "odom";
|
|
|
+ odom_frame_id = "odom";
|
|
|
+ map_cloud_resolution = 0.05; // 地图点云分辨率
|
|
|
+ trans_odom2map.setIdentity(); // 设置为单位矩阵
|
|
|
max_keyframes_per_update = 10;
|
|
|
+ keyframe_updater.reset(new hdl_graph_slam::KeyframeUpdater(nh));
|
|
|
+ points_topic = "/velodyne_points";
|
|
|
+ graph_slam.reset(new hdl_graph_slam::GraphSLAM("lm_var_cholmod")); // 智能指针,用reset重新初始化,让它重新指向新分配的对象
|
|
|
+ // graph_slam.reset(new GraphSLAM(private_nh.param<std::string>("g2o_solver_type", "lm_var"))); // 智能指针,用reset重新初始化,让它重新指向新分配的对象
|
|
|
+
|
|
|
+ inf_calclator.reset(new hdl_graph_slam::InformationMatrixCalculator(nh));
|
|
|
+ loop_detector.reset(new hdl_graph_slam::LoopDetector(nh));
|
|
|
|
|
|
- // odom_sub.reset(new message_filters::Subscriber<nav_msgs::Odometry>(nh, "/laser_odom", 256)); // 创建 message_filters::Subscriber 对象,用于订阅nav_msgs::Odometry类型的消息
|
|
|
- // cloud_sub.reset(new message_filters::Subscriber<sensor_msgs::PointCloud2>(nh, "/filtered_points", 32)); // 创建 message_filters::Subscriber 对象,用于订阅sensor_msgs::PointCloud2类型的消息。
|
|
|
- // sync.reset(new message_filters::Synchronizer<ApproxSyncPolicy>(ApproxSyncPolicy(32), *odom_sub, *cloud_sub)); // 创建 message_filters::Synchronizer 对象,用于同步上面创建的两个订阅者(odom_sub和cloud_sub)的消息。
|
|
|
- // // sync->registerCallback(boost::bind(&hdl_backend::cloud_callback, this, _1, _2)); // 为同步器注册了一个回调函数,当同步条件满足时,会调用HdlGraphSlamNodelet类的cloud_callback成员函数
|
|
|
- // sync->registerCallback(std::bind(&hdl_backend::cloud_callback, this, std::placeholders::_1, std::placeholders::_2));
|
|
|
+ anchor_node = nullptr;
|
|
|
+ anchor_edge = nullptr;
|
|
|
+ odom_sub.reset(new message_filters::Subscriber<nav_msgs::Odometry>(nh, "/laser_odom", 256)); // 创建 message_filters::Subscriber 对象,用于订阅nav_msgs::Odometry类型的消息
|
|
|
+ cloud_sub.reset(new message_filters::Subscriber<sensor_msgs::PointCloud2>(nh, "/aligned_points", 32)); // 创建 message_filters::Subscriber 对象,用于订阅sensor_msgs::PointCloud2类型的消息。
|
|
|
+ sync.reset(new message_filters::Synchronizer<ApproxSyncPolicy>(ApproxSyncPolicy(32), *odom_sub, *cloud_sub)); // 创建 message_filters::Synchronizer 对象,用于同步上面创建的两个订阅者(odom_sub和cloud_sub)的消息。
|
|
|
+ sync->registerCallback(boost::bind(&hdl_backend::cloud_callback, this, _1, _2)); // 为同步器注册了一个回调函数,当同步条件满足时,会调用HdlGraphSlamNodelet类的cloud_callback成员函数
|
|
|
|
|
|
- // 订阅者的创建
|
|
|
- odom_sub.reset(new message_filters::Subscriber<nav_msgs::Odometry>(nh, "/laser_odom", 256)); // 创建 message_filters::Subscriber 对象,用于订阅nav_msgs::Odometry类型的消息
|
|
|
- cloud_sub.reset(new message_filters::Subscriber<sensor_msgs::PointCloud2>(nh, "/filtered_points", 32)); // 创建 message_filters::Subscriber 对象,用于订阅sensor_msgs::PointCloud2类型的消息
|
|
|
+ markers_pub = nh.advertise<visualization_msgs::MarkerArray>("/hdl_graph_slam/markers", 16); // 发布可视化数据(具体是什么还不知道) 这种类型的消息通常用于在RViz等可视化工具中显示标记(markers)
|
|
|
+ odom2map_pub = nh.advertise<geometry_msgs::TransformStamped>("/hdl_graph_slam/odom2pub", 16); // 发布从里程计到地图的变换
|
|
|
+ map_points_pub = nh.advertise<sensor_msgs::PointCloud2>("/hdl_graph_slam/map_points", 1, true); // 这个话题会保留以前扫描过的点云!! 扫过的地方的点云就是
|
|
|
|
|
|
- // 同步器的创建
|
|
|
- sync.reset(new message_filters::Synchronizer<ApproxSyncPolicy>(ApproxSyncPolicy(32), *odom_sub, *cloud_sub)); // 创建 message_filters::Synchronizer 对象,用于同步上面创建的两个订阅者(odom_sub和cloud_sub)的消息
|
|
|
+ read_until_pub = nh.advertise<std_msgs::Header>("/hdl_graph_slam/read_until", 32); // 这种类型的消息通常用于指示读取操作应该持续到何时
|
|
|
|
|
|
- // 注册回调函数
|
|
|
- sync->registerCallback(boost::bind(&hdl_backend::cloud_callback, this, std::placeholders::_1, std::placeholders::_2)); // 使用 std::bind 注册回调函数
|
|
|
+ save_map_service_server = nh.advertiseService("/hdl_graph_slam/save_map", &hdl_backend::save_map_service, this); // 保存地图
|
|
|
|
|
|
+ graph_updated = false;
|
|
|
|
|
|
+ double graph_update_interval = 1; // 表示图优化更新的时间间隔,默认值为3.0秒 interval:间隔
|
|
|
+ double map_cloud_update_interval = 4; // 地图点云更新的时间间隔,默认值为10.0秒
|
|
|
|
|
|
+ optimization_timer = nh.createWallTimer(ros::WallDuration(graph_update_interval), &hdl_backend::optimization_timer_callback, this); // 创建一个定时器,定时器会在每个 graph_update_interval 秒后触发,然后调用 optimization_timer_callback 函数
|
|
|
+ map_publish_timer = nh.createWallTimer(ros::WallDuration(map_cloud_update_interval), &hdl_backend::map_points_publish_timer_callback, this); // 创建一个定时器,定时器会在每个 map_cloud_update_interval 秒后触发,然后调用 map_points_publish_timer_callback 函数
|
|
|
+
|
|
|
+ map_cloud_resolution = 0.05;
|
|
|
+
|
|
|
+ ros::spin();
|
|
|
}
|
|
|
|
|
|
+/**
|
|
|
+ * @brief 这个函数将队列中的所有数据添加到姿势图中,然后优化姿势图
|
|
|
+ * @param event // 是ROS提供的定时器时间类,包含信息有:计时器出发的时间戳、上一次出发的时间戳、计时器的周期信息等
|
|
|
+ */
|
|
|
+void hdl_backend::optimization_timer_callback(const ros::WallTimerEvent& event) {
|
|
|
+ LOG(INFO) << "optimization_timer_callback";
|
|
|
+
|
|
|
+ std::lock_guard<std::mutex> lock(main_thread_mutex); // 创建了一个锁,用于保护对主线程的访问,确保线程安全
|
|
|
+
|
|
|
+ // add keyframes and floor coeffs in the queues to the pose graph 将队列中的关键帧和楼层系数添加到姿势图中
|
|
|
+ bool keyframe_updated = flush_keyframe_queue(); // 调用 flush_keyframe_queue 函数,将关键帧队列中的数据添加到位姿图中,并返回是否有关键帧被更新
|
|
|
+ // LOG(INFO) << keyframe_updated;
|
|
|
+
|
|
|
+ if(!keyframe_updated) { // 如果没有关键帧被更新,则执行大括号内的代码
|
|
|
+ std_msgs::Header read_until;
|
|
|
+ read_until.stamp = ros::Time::now() + ros::Duration(30, 0); // 时间戳为什么要加30秒?
|
|
|
+ read_until.frame_id = points_topic;
|
|
|
+ read_until_pub.publish(read_until);
|
|
|
+ read_until.frame_id = "/filtered_points";
|
|
|
+ read_until_pub.publish(read_until); // 不同的 frame_id 和 话题 发布两次, 是干嘛用的?
|
|
|
+ }
|
|
|
+ if(!keyframe_updated) {
|
|
|
+ // 检查地板、GPS、IMU等队列,分别调用相应的 flush 函数(例如 flush_floor_queue、flush_gps_queue、flush_imu_queue),如果这些数据没有更新,则函数直接返回,不进行后续操作。
|
|
|
+ LOG(INFO) << "!keyframe_updated";
|
|
|
+ return;
|
|
|
+ }
|
|
|
+ // loop detection 闭环检测
|
|
|
+ std::vector<hdl_graph_slam::Loop::Ptr> loops = loop_detector->detect(keyframes, new_keyframes, *graph_slam);
|
|
|
+
|
|
|
+ // 如果检测到闭环,则为闭环关系添加一个新的边到位姿图中,计算相对位姿并生成信息矩阵,确保闭环边的优化权重。
|
|
|
+ for(const auto& loop : loops) { // 遍历闭环检测结果
|
|
|
+ Eigen::Isometry3d relpose(loop->relative_pose.cast<double>());
|
|
|
+ Eigen::MatrixXd information_matrix = inf_calclator->calc_information_matrix(loop->key1->cloud, loop->key2->cloud, relpose);
|
|
|
+ auto edge = graph_slam->add_se3_edge(loop->key1->node, loop->key2->node, relpose, information_matrix);
|
|
|
+ graph_slam->add_robust_kernel(edge, "Huber", 1.0);
|
|
|
+ }
|
|
|
+ LOG(INFO) << "!111111111";
|
|
|
+
|
|
|
+
|
|
|
+ std::copy(new_keyframes.begin(), new_keyframes.end(), std::back_inserter(keyframes)); // 将新关键帧 new_keyframes 合并到已有的关键帧列表 keyframes 中
|
|
|
+ new_keyframes.clear(); // 清空 new_keyframes
|
|
|
+
|
|
|
+ // move the first node anchor position to the current estimate of the first node pose 将第一节点锚点位置移动到第一节点姿态的当前估计值
|
|
|
+ // so the first node moves freely while trying to stay around the origin 因此,第一个节点在试图停留在原点附近的同时可以自由移动
|
|
|
+
|
|
|
+ if(anchor_node && true) { // launch文件中,fix_first_node_adaptive 设置为 true
|
|
|
+ Eigen::Isometry3d anchor_target = static_cast<g2o::VertexSE3*>(anchor_edge->vertices()[1])->estimate();
|
|
|
+ anchor_node->setEstimate(anchor_target);
|
|
|
+ // 如果启用了自适应固定第一帧的功能(参数 "fix_first_node_adaptive"),则将第一个关键帧的锚点位置更新为当前估计的位置,以允许它自由移动但仍然保持在原点附近。
|
|
|
+ }
|
|
|
+ LOG(INFO) << "!2222222222";
|
|
|
+ // optimize the pose graph
|
|
|
+ int num_iterations = 512; // launch文件中都是设置成512
|
|
|
+ graph_slam->optimize(num_iterations); // 使用 g2o 优化器对位姿图进行优化,优化的迭代次数由参数 "g2o_solver_num_iterations" 控制
|
|
|
+
|
|
|
+
|
|
|
+ std::vector<hdl_graph_slam::KeyFrameSnapshot::Ptr> snapshot(keyframes.size());
|
|
|
+ std::transform(keyframes.begin(), keyframes.end(), snapshot.begin(), [=](const hdl_graph_slam::KeyFrame::Ptr& k) { return std::make_shared<hdl_graph_slam::KeyFrameSnapshot>(k); });
|
|
|
+
|
|
|
+ keyframes_snapshot_mutex.lock();
|
|
|
+ keyframes_snapshot.swap(snapshot);
|
|
|
+ keyframes_snapshot_mutex.unlock();
|
|
|
+ graph_updated = true;
|
|
|
+ LOG(INFO) << "graph_updated";
|
|
|
+
|
|
|
+ // publish tf 发布位姿变换
|
|
|
+ const auto& keyframe = keyframes.back(); // 获取最新的关键帧估计
|
|
|
+ Eigen::Isometry3d trans = keyframe->node->estimate() * keyframe->odom.inverse();
|
|
|
+ trans_odom2map_mutex.lock();
|
|
|
+ trans_odom2map = trans.matrix().cast<float>();
|
|
|
+ trans_odom2map_mutex.unlock();
|
|
|
+
|
|
|
+ if(odom2map_pub.getNumSubscribers()) {
|
|
|
+ geometry_msgs::TransformStamped ts = hdl_graph_slam::matrix2transform(keyframe->stamp, trans.matrix().cast<float>(), map_frame_id, odom_frame_id);
|
|
|
+ odom2map_pub.publish(ts); // 发布odom2map_pub话题中
|
|
|
+ LOG(INFO) << "pub odom2map_pub";
|
|
|
+ }
|
|
|
+
|
|
|
+ if(markers_pub.getNumSubscribers()) {
|
|
|
+ auto markers = create_marker_array(ros::Time::now());
|
|
|
+ markers_pub.publish(markers);
|
|
|
+ LOG(INFO) << "pub markers_pub";
|
|
|
+ }
|
|
|
+
|
|
|
+}
|
|
|
+
|
|
|
+/**
|
|
|
+ * @brief generate map point cloud and publish it
|
|
|
+ * @param event
|
|
|
+ */
|
|
|
+void hdl_backend::map_points_publish_timer_callback(const ros::WallTimerEvent& event) {
|
|
|
+ // LOG(INFO) << "map_points_publish_timer_callback";
|
|
|
+
|
|
|
+ if(!map_points_pub.getNumSubscribers() || !graph_updated) {
|
|
|
+ // LOG(INFO) << "cloud 222222";
|
|
|
+
|
|
|
+ return;
|
|
|
+ }
|
|
|
+ // LOG(INFO) << "cloud 33333";
|
|
|
+
|
|
|
+ std::vector<hdl_graph_slam::KeyFrameSnapshot::Ptr> snapshot;
|
|
|
+
|
|
|
+ // keyframes_snapshot_mutex.lock();
|
|
|
+ snapshot = keyframes_snapshot;
|
|
|
+ // keyframes_snapshot_mutex.unlock();
|
|
|
+
|
|
|
+ auto cloud = map_cloud_generator->generate(snapshot, map_cloud_resolution);
|
|
|
+ if(!cloud) {
|
|
|
+ return;
|
|
|
+ }
|
|
|
+
|
|
|
+ cloud->header.frame_id = map_frame_id;
|
|
|
+ cloud->header.stamp = snapshot.back()->cloud->header.stamp;
|
|
|
+
|
|
|
+ sensor_msgs::PointCloud2Ptr cloud_msg(new sensor_msgs::PointCloud2());
|
|
|
+ pcl::toROSMsg(*cloud, *cloud_msg);
|
|
|
+
|
|
|
+ // cloud->header.frame_id = "odom"; //
|
|
|
+ LOG(INFO) << cloud_msg->header.frame_id;
|
|
|
+
|
|
|
+ map_points_pub.publish(*cloud_msg);
|
|
|
+ // cloud->header.frame_id = "map"; //
|
|
|
+}
|
|
|
+
|
|
|
/**
|
|
|
* @brief 接收点云数据并放到 keyframe_queue 中
|
|
|
* @param odom_msg 前端的激光里程计数据
|
|
|
* @param cloud_msg 前端滤波后的点云数据
|
|
|
*/
|
|
|
-void cloud_callback(const nav_msgs::OdometryConstPtr& odom_msg, const sensor_msgs::PointCloud2::ConstPtr& cloud_msg) {
|
|
|
- const ros::Time& stamp = cloud_msg->header.stamp; // 获取点云数据的时间戳
|
|
|
- Eigen::Isometry3d odom = hdl_graph_slam::odom2isometry(odom_msg); // 将里程计消息转换为Eigen库中的Isometry3d类型,它表示一个3D刚体变换(包括旋转和平移)
|
|
|
+void hdl_backend::cloud_callback(const nav_msgs::OdometryConstPtr& odom_msg, const sensor_msgs::PointCloud2::ConstPtr& cloud_msg) {
|
|
|
+ // LOG(INFO)<< "cloud_callback";
|
|
|
+ const ros::Time& stamp = cloud_msg->header.stamp; // 获取点云数据的时间戳
|
|
|
+ Eigen::Isometry3d odom = hdl_graph_slam::odom2isometry(odom_msg); // 将里程计消息转换为Eigen库中的Isometry3d类型,它表示一个3D刚体变换(包括旋转和平移)
|
|
|
+
|
|
|
+ pcl::PointCloud<PointT>::Ptr cloud(new pcl::PointCloud<PointT>()); // 创建一个点云对象的指针
|
|
|
+ pcl::fromROSMsg(*cloud_msg, *cloud); // 将ROS的点云消息 cloud_msg 转换为PCL(Point Cloud Library)的点云格式
|
|
|
+ if(base_frame_id.empty()) { // 用类的单例实现应该就ok?
|
|
|
+ base_frame_id = cloud_msg->header.frame_id; // 将当前点云消息的坐标系 frame_id 设置为基础坐标系 base_frame_id 是整个系统中关键帧数据的参考坐标系
|
|
|
+ }
|
|
|
+
|
|
|
+ // 更新关键帧判断
|
|
|
+ if(!keyframe_updater->update(odom)) { // 根据当前的里程计信息 odom 判断是否需要生成新的关键帧
|
|
|
+ // LOG(INFO) << "!keyframe_updater->update(odom)";
|
|
|
+ std::lock_guard<std::mutex> lock(keyframe_queue_mutex); // 这行代码的作用是确保线程安全,防止多个线程同时访问或修改 keyframe_queue 队列
|
|
|
+ // std::lock_guard<std::mutex> 是 C++ 标准库中的一个类,用来简化互斥锁(std::mutex)的使用。它的作用是在其作用域内自动对给定的互斥量加锁,并在作用域结束时自动解锁
|
|
|
+ // keyframe_queue_mutex 是一个互斥量(std::mutex),用于保护关键帧队列 keyframe_queue。当多个线程试图同时访问或修改 keyframe_queue 时,互斥量确保只有一个线程能够访问该资源,避免数据竞争和并发问题
|
|
|
+ // 工作原理:当这行代码执行时,lock_guard 会锁住 keyframe_queue_mutex,使其他线程无法访问与之关联的资源(即 keyframe_queue) 当程序执行离开该作用域时,lock_guard 会自动释放锁,无需显式调用 unlock() 函数
|
|
|
+ // 为什么需要锁? 在多线程环境中(比如 ROS 回调函数可能被不同线程调用),如果多个线程同时读取或写入 keyframe_queue,可能导致数据不一致或崩溃。使用互斥量确保对 keyframe_queue 的操作是原子性的,即一个线程在操作时,其他线程必须等待
|
|
|
+
|
|
|
+ if(keyframe_queue.empty()) { // 如果关键帧队列是空的,发布一个 ROS 消息通知系统继续读取点云数据,直到指定时间点(stamp + ros::Duration(10, 0))。这段代码确保在没有关键帧生成时,系统能够继续读取点云数据
|
|
|
+ // LOG(INFO) << "keyframe_queue.empty()";
|
|
|
+ std_msgs::Header read_until;
|
|
|
+ read_until.stamp = stamp + ros::Duration(10, 0);
|
|
|
+ read_until.frame_id = points_topic;
|
|
|
+ read_until_pub.publish(read_until);
|
|
|
+ read_until.frame_id = "/filtered_points";
|
|
|
+ read_until_pub.publish(read_until);
|
|
|
+ }
|
|
|
+ return;
|
|
|
+ }
|
|
|
+
|
|
|
+ double accum_d = keyframe_updater->get_accum_distance(); // 获取累计的运动距离,用于判断关键帧生成的条件
|
|
|
+ hdl_graph_slam::KeyFrame::Ptr keyframe(new hdl_graph_slam::KeyFrame(stamp, odom, accum_d, cloud)); // 创建一个新的关键帧 keyframe,其中包含当前的时间戳 stamp,里程计信息 odom,累计距离 accum_d,以及处理后的点云数据 cloud(这里的处理就是做了个消息类型的转换)
|
|
|
+
|
|
|
+ std::lock_guard<std::mutex> lock(keyframe_queue_mutex); // 使用 std::lock_guard 加锁,确保对关键帧队列 keyframe_queue 的操作是线程安全的
|
|
|
+ keyframe_queue.push_back(keyframe); // 将新生成的关键帧 keyframe 推入 keyframe_queue 队列,供后续的处理使用
|
|
|
+ // LOG(INFO) << "keyframe_queue.push_back(keyframe)";
|
|
|
+}
|
|
|
+
|
|
|
+/**
|
|
|
+ * @brief save map data as pcd
|
|
|
+ * @param req
|
|
|
+ * @param res
|
|
|
+ * @return
|
|
|
+ */
|
|
|
+bool hdl_backend::save_map_service(hdl_graph_slam::SaveMapRequest& req, hdl_graph_slam::SaveMapResponse& res) {
|
|
|
+ std::vector<hdl_graph_slam::KeyFrameSnapshot::Ptr> snapshot;
|
|
|
|
|
|
- pcl::PointCloud<PointT>::Ptr cloud(new pcl::PointCloud<PointT>()); // 创建一个点云对象的指针
|
|
|
- pcl::fromROSMsg(*cloud_msg, *cloud); // 将ROS的点云消息 cloud_msg 转换为PCL(Point Cloud Library)的点云格式
|
|
|
- if(base_frame_id.empty()) { // 用类的单例实现应该就ok?
|
|
|
- // 明天再试一下
|
|
|
+ keyframes_snapshot_mutex.lock();
|
|
|
+ snapshot = keyframes_snapshot;
|
|
|
+ keyframes_snapshot_mutex.unlock();
|
|
|
|
|
|
+ auto cloud = map_cloud_generator->generate(snapshot, req.resolution);
|
|
|
+ if(!cloud) {
|
|
|
+ res.success = false;
|
|
|
+ return true;
|
|
|
+ }
|
|
|
|
|
|
- base_frame_id = cloud_msg->header.frame_id; // 将当前点云消息的坐标系 frame_id 设置为基础坐标系 base_frame_id 是整个系统中关键帧数据的参考坐标系
|
|
|
+ if(zero_utm && req.utm) {
|
|
|
+ for(auto& pt : cloud->points) {
|
|
|
+ pt.getVector3fMap() += (*zero_utm).cast<float>();
|
|
|
}
|
|
|
+ }
|
|
|
|
|
|
- // 更新关键帧判断
|
|
|
- if(!keyframe_updater->update(odom)) { // 根据当前的里程计信息 odom 判断是否需要生成新的关键帧
|
|
|
- std::lock_guard<std::mutex> lock(keyframe_queue_mutex); // 这行代码的作用是确保线程安全,防止多个线程同时访问或修改 keyframe_queue 队列
|
|
|
- // std::lock_guard<std::mutex> 是 C++ 标准库中的一个类,用来简化互斥锁(std::mutex)的使用。它的作用是在其作用域内自动对给定的互斥量加锁,并在作用域结束时自动解锁
|
|
|
- // keyframe_queue_mutex 是一个互斥量(std::mutex),用于保护关键帧队列 keyframe_queue。当多个线程试图同时访问或修改 keyframe_queue 时,互斥量确保只有一个线程能够访问该资源,避免数据竞争和并发问题
|
|
|
- // 工作原理:当这行代码执行时,lock_guard 会锁住 keyframe_queue_mutex,使其他线程无法访问与之关联的资源(即 keyframe_queue) 当程序执行离开该作用域时,lock_guard 会自动释放锁,无需显式调用 unlock() 函数
|
|
|
- // 为什么需要锁? 在多线程环境中(比如 ROS 回调函数可能被不同线程调用),如果多个线程同时读取或写入 keyframe_queue,可能导致数据不一致或崩溃。使用互斥量确保对 keyframe_queue 的操作是原子性的,即一个线程在操作时,其他线程必须等待
|
|
|
-
|
|
|
- if(keyframe_queue.empty()) { // 如果关键帧队列是空的,发布一个 ROS 消息通知系统继续读取点云数据,直到指定时间点(stamp + ros::Duration(10, 0))。这段代码确保在没有关键帧生成时,系统能够继续读取点云数据
|
|
|
- std_msgs::Header read_until;
|
|
|
- read_until.stamp = stamp + ros::Duration(10, 0);
|
|
|
- read_until.frame_id = points_topic;
|
|
|
- read_until_pub.publish(read_until);
|
|
|
- read_until.frame_id = "/filtered_points";
|
|
|
- read_until_pub.publish(read_until);
|
|
|
+ cloud->header.frame_id = map_frame_id;
|
|
|
+ cloud->header.stamp = snapshot.back()->cloud->header.stamp;
|
|
|
+
|
|
|
+ if(zero_utm) {
|
|
|
+ std::ofstream ofs(req.destination + ".utm");
|
|
|
+ ofs << boost::format("%.6f %.6f %.6f") % zero_utm->x() % zero_utm->y() % zero_utm->z() << std::endl;
|
|
|
+ }
|
|
|
+ int ret = pcl::io::savePCDFileBinary(req.destination, *cloud);
|
|
|
+ res.success = ret == 0;
|
|
|
+
|
|
|
+ return true;
|
|
|
+}
|
|
|
+
|
|
|
+/**
|
|
|
+ * @brief this method adds all the keyframes in #keyframe_queue to the pose graph (odometry edges) 此方法将#keyframe_queue中的所有关键帧添加到姿势图中(里程计边)
|
|
|
+ * @return if true, at least one keyframe was added to the pose graph 如果为真,则至少有一个关键帧被添加到姿势图中
|
|
|
+ * 将队列中的关键帧添加到位姿图中,并返回是否至少有一个关键帧被添加
|
|
|
+ *
|
|
|
+ * pose graph 是什么?
|
|
|
+ */
|
|
|
+bool hdl_backend::flush_keyframe_queue() {
|
|
|
+ std::lock_guard<std::mutex> lock(keyframe_queue_mutex); // 多线程锁
|
|
|
+
|
|
|
+ LOG(INFO) << "flush_keyframe_queue";
|
|
|
+
|
|
|
+ if(keyframe_queue.empty()) { // 没有关键帧就返回
|
|
|
+ LOG(INFO) << "flush_keyframe_queue: keyframe_queue.empty()";
|
|
|
+ return false;
|
|
|
+ }
|
|
|
+ LOG(INFO) << "flush_keyframe_queue: keyframe_queue.empty() ===========";
|
|
|
+
|
|
|
+ trans_odom2map_mutex.lock();
|
|
|
+ Eigen::Isometry3d odom2map(trans_odom2map.cast<double>());
|
|
|
+ trans_odom2map_mutex.unlock();
|
|
|
+
|
|
|
+ std::cout << "flush_keyframe_queue - keyframes len:" << keyframes.size() << std::endl;
|
|
|
+ int num_processed = 0;
|
|
|
+ for(int i = 0; i < std::min<int>(keyframe_queue.size(), max_keyframes_per_update); i++) {
|
|
|
+ num_processed = i;
|
|
|
+
|
|
|
+ const auto& keyframe = keyframe_queue[i];
|
|
|
+ // new_keyframes will be tested later for loop closure
|
|
|
+ new_keyframes.push_back(keyframe);
|
|
|
+
|
|
|
+ // add pose node
|
|
|
+ Eigen::Isometry3d odom = odom2map * keyframe->odom;
|
|
|
+ keyframe->node = graph_slam->add_se3_node(odom);
|
|
|
+ keyframe_hash[keyframe->stamp] = keyframe;
|
|
|
+
|
|
|
+ // fix the first node
|
|
|
+ if(keyframes.empty() && new_keyframes.size() == 1) {
|
|
|
+ if(nh.param<bool>("fix_first_node", false)) {
|
|
|
+ Eigen::MatrixXd inf = Eigen::MatrixXd::Identity(6, 6);
|
|
|
+ std::stringstream sst(nh.param<std::string>("fix_first_node_stddev", "1 1 1 1 1 1"));
|
|
|
+ for(int i = 0; i < 6; i++) {
|
|
|
+ double stddev = 1.0;
|
|
|
+ sst >> stddev;
|
|
|
+ inf(i, i) = 1.0 / stddev;
|
|
|
+ }
|
|
|
+
|
|
|
+ anchor_node = graph_slam->add_se3_node(Eigen::Isometry3d::Identity());
|
|
|
+ anchor_node->setFixed(true);
|
|
|
+ anchor_edge = graph_slam->add_se3_edge(anchor_node, keyframe->node, Eigen::Isometry3d::Identity(), inf);
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ if(i == 0 && keyframes.empty()) {
|
|
|
+ continue;
|
|
|
+ }
|
|
|
+
|
|
|
+ // add edge between consecutive keyframes
|
|
|
+ const auto& prev_keyframe = i == 0 ? keyframes.back() : keyframe_queue[i - 1];
|
|
|
+
|
|
|
+ Eigen::Isometry3d relative_pose = keyframe->odom.inverse() * prev_keyframe->odom;
|
|
|
+ Eigen::MatrixXd information = inf_calclator->calc_information_matrix(keyframe->cloud, prev_keyframe->cloud, relative_pose);
|
|
|
+ auto edge = graph_slam->add_se3_edge(keyframe->node, prev_keyframe->node, relative_pose, information);
|
|
|
+ graph_slam->add_robust_kernel(edge, "NONE", 1.0);
|
|
|
+ }
|
|
|
+
|
|
|
+ std_msgs::Header read_until;
|
|
|
+ read_until.stamp = keyframe_queue[num_processed]->stamp + ros::Duration(10, 0);
|
|
|
+ read_until.frame_id = points_topic;
|
|
|
+ read_until_pub.publish(read_until);
|
|
|
+ read_until.frame_id = "/filtered_points";
|
|
|
+ read_until_pub.publish(read_until);
|
|
|
+
|
|
|
+ keyframe_queue.erase(keyframe_queue.begin(), keyframe_queue.begin() + num_processed + 1);
|
|
|
+ return true;
|
|
|
+}
|
|
|
+
|
|
|
+/**
|
|
|
+ * @brief create visualization marker
|
|
|
+ * @param stamp
|
|
|
+ * @return
|
|
|
+ */
|
|
|
+visualization_msgs::MarkerArray hdl_backend::create_marker_array(const ros::Time& stamp) const {
|
|
|
+ visualization_msgs::MarkerArray markers;
|
|
|
+ markers.markers.resize(4);
|
|
|
+
|
|
|
+ // node markers
|
|
|
+ visualization_msgs::Marker& traj_marker = markers.markers[0];
|
|
|
+ traj_marker.header.frame_id = "map";
|
|
|
+ traj_marker.header.stamp = stamp;
|
|
|
+ traj_marker.ns = "nodes";
|
|
|
+ traj_marker.id = 0;
|
|
|
+ traj_marker.type = visualization_msgs::Marker::SPHERE_LIST;
|
|
|
+
|
|
|
+ traj_marker.pose.orientation.w = 1.0;
|
|
|
+ traj_marker.scale.x = traj_marker.scale.y = traj_marker.scale.z = 0.5;
|
|
|
+
|
|
|
+ visualization_msgs::Marker& imu_marker = markers.markers[1];
|
|
|
+ imu_marker.header = traj_marker.header;
|
|
|
+ imu_marker.ns = "imu";
|
|
|
+ imu_marker.id = 1;
|
|
|
+ imu_marker.type = visualization_msgs::Marker::SPHERE_LIST;
|
|
|
+
|
|
|
+ imu_marker.pose.orientation.w = 1.0;
|
|
|
+ imu_marker.scale.x = imu_marker.scale.y = imu_marker.scale.z = 0.75;
|
|
|
+
|
|
|
+ traj_marker.points.resize(keyframes.size());
|
|
|
+ traj_marker.colors.resize(keyframes.size());
|
|
|
+ for(int i = 0; i < keyframes.size(); i++) {
|
|
|
+ Eigen::Vector3d pos = keyframes[i]->node->estimate().translation();
|
|
|
+ traj_marker.points[i].x = pos.x();
|
|
|
+ traj_marker.points[i].y = pos.y();
|
|
|
+ traj_marker.points[i].z = pos.z();
|
|
|
+
|
|
|
+ double p = static_cast<double>(i) / keyframes.size();
|
|
|
+ traj_marker.colors[i].r = 1.0 - p;
|
|
|
+ traj_marker.colors[i].g = p;
|
|
|
+ traj_marker.colors[i].b = 0.0;
|
|
|
+ traj_marker.colors[i].a = 1.0;
|
|
|
+
|
|
|
+ if(keyframes[i]->acceleration) {
|
|
|
+ Eigen::Vector3d pos = keyframes[i]->node->estimate().translation();
|
|
|
+ geometry_msgs::Point point;
|
|
|
+ point.x = pos.x();
|
|
|
+ point.y = pos.y();
|
|
|
+ point.z = pos.z();
|
|
|
+
|
|
|
+ std_msgs::ColorRGBA color;
|
|
|
+ color.r = 0.0;
|
|
|
+ color.g = 0.0;
|
|
|
+ color.b = 1.0;
|
|
|
+ color.a = 0.1;
|
|
|
+
|
|
|
+ imu_marker.points.push_back(point);
|
|
|
+ imu_marker.colors.push_back(color);
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ // edge markers
|
|
|
+ visualization_msgs::Marker& edge_marker = markers.markers[2];
|
|
|
+ edge_marker.header.frame_id = "map";
|
|
|
+ edge_marker.header.stamp = stamp;
|
|
|
+ edge_marker.ns = "edges";
|
|
|
+ edge_marker.id = 2;
|
|
|
+ edge_marker.type = visualization_msgs::Marker::LINE_LIST;
|
|
|
+
|
|
|
+ edge_marker.pose.orientation.w = 1.0;
|
|
|
+ edge_marker.scale.x = 0.05;
|
|
|
+
|
|
|
+ edge_marker.points.resize(graph_slam->graph->edges().size() * 2);
|
|
|
+ edge_marker.colors.resize(graph_slam->graph->edges().size() * 2);
|
|
|
+
|
|
|
+ auto edge_itr = graph_slam->graph->edges().begin();
|
|
|
+ for(int i = 0; edge_itr != graph_slam->graph->edges().end(); edge_itr++, i++) {
|
|
|
+ g2o::HyperGraph::Edge* edge = *edge_itr;
|
|
|
+ g2o::EdgeSE3* edge_se3 = dynamic_cast<g2o::EdgeSE3*>(edge);
|
|
|
+ if(edge_se3) {
|
|
|
+ g2o::VertexSE3* v1 = dynamic_cast<g2o::VertexSE3*>(edge_se3->vertices()[0]);
|
|
|
+ g2o::VertexSE3* v2 = dynamic_cast<g2o::VertexSE3*>(edge_se3->vertices()[1]);
|
|
|
+ Eigen::Vector3d pt1 = v1->estimate().translation();
|
|
|
+ Eigen::Vector3d pt2 = v2->estimate().translation();
|
|
|
+
|
|
|
+ edge_marker.points[i * 2].x = pt1.x();
|
|
|
+ edge_marker.points[i * 2].y = pt1.y();
|
|
|
+ edge_marker.points[i * 2].z = pt1.z();
|
|
|
+ edge_marker.points[i * 2 + 1].x = pt2.x();
|
|
|
+ edge_marker.points[i * 2 + 1].y = pt2.y();
|
|
|
+ edge_marker.points[i * 2 + 1].z = pt2.z();
|
|
|
+
|
|
|
+ double p1 = static_cast<double>(v1->id()) / graph_slam->graph->vertices().size();
|
|
|
+ double p2 = static_cast<double>(v2->id()) / graph_slam->graph->vertices().size();
|
|
|
+ edge_marker.colors[i * 2].r = 1.0 - p1;
|
|
|
+ edge_marker.colors[i * 2].g = p1;
|
|
|
+ edge_marker.colors[i * 2].a = 1.0;
|
|
|
+ edge_marker.colors[i * 2 + 1].r = 1.0 - p2;
|
|
|
+ edge_marker.colors[i * 2 + 1].g = p2;
|
|
|
+ edge_marker.colors[i * 2 + 1].a = 1.0;
|
|
|
+
|
|
|
+ if(std::abs(v1->id() - v2->id()) > 2) {
|
|
|
+ edge_marker.points[i * 2].z += 0.5;
|
|
|
+ edge_marker.points[i * 2 + 1].z += 0.5;
|
|
|
}
|
|
|
|
|
|
- return;
|
|
|
+ continue;
|
|
|
+ }
|
|
|
+
|
|
|
+ g2o::EdgeSE3Plane* edge_plane = dynamic_cast<g2o::EdgeSE3Plane*>(edge);
|
|
|
+ if(edge_plane) {
|
|
|
+ g2o::VertexSE3* v1 = dynamic_cast<g2o::VertexSE3*>(edge_plane->vertices()[0]);
|
|
|
+ Eigen::Vector3d pt1 = v1->estimate().translation();
|
|
|
+ Eigen::Vector3d pt2(pt1.x(), pt1.y(), 0.0);
|
|
|
+
|
|
|
+ edge_marker.points[i * 2].x = pt1.x();
|
|
|
+ edge_marker.points[i * 2].y = pt1.y();
|
|
|
+ edge_marker.points[i * 2].z = pt1.z();
|
|
|
+ edge_marker.points[i * 2 + 1].x = pt2.x();
|
|
|
+ edge_marker.points[i * 2 + 1].y = pt2.y();
|
|
|
+ edge_marker.points[i * 2 + 1].z = pt2.z();
|
|
|
+
|
|
|
+ edge_marker.colors[i * 2].b = 1.0;
|
|
|
+ edge_marker.colors[i * 2].a = 1.0;
|
|
|
+ edge_marker.colors[i * 2 + 1].b = 1.0;
|
|
|
+ edge_marker.colors[i * 2 + 1].a = 1.0;
|
|
|
+
|
|
|
+ continue;
|
|
|
+ }
|
|
|
+
|
|
|
+ g2o::EdgeSE3PriorXY* edge_priori_xy = dynamic_cast<g2o::EdgeSE3PriorXY*>(edge);
|
|
|
+ if(edge_priori_xy) {
|
|
|
+ g2o::VertexSE3* v1 = dynamic_cast<g2o::VertexSE3*>(edge_priori_xy->vertices()[0]);
|
|
|
+ Eigen::Vector3d pt1 = v1->estimate().translation();
|
|
|
+ Eigen::Vector3d pt2 = Eigen::Vector3d::Zero();
|
|
|
+ pt2.head<2>() = edge_priori_xy->measurement();
|
|
|
+
|
|
|
+ edge_marker.points[i * 2].x = pt1.x();
|
|
|
+ edge_marker.points[i * 2].y = pt1.y();
|
|
|
+ edge_marker.points[i * 2].z = pt1.z() + 0.5;
|
|
|
+ edge_marker.points[i * 2 + 1].x = pt2.x();
|
|
|
+ edge_marker.points[i * 2 + 1].y = pt2.y();
|
|
|
+ edge_marker.points[i * 2 + 1].z = pt2.z() + 0.5;
|
|
|
+
|
|
|
+ edge_marker.colors[i * 2].r = 1.0;
|
|
|
+ edge_marker.colors[i * 2].a = 1.0;
|
|
|
+ edge_marker.colors[i * 2 + 1].r = 1.0;
|
|
|
+ edge_marker.colors[i * 2 + 1].a = 1.0;
|
|
|
+
|
|
|
+ continue;
|
|
|
+ }
|
|
|
+
|
|
|
+ g2o::EdgeSE3PriorXYZ* edge_priori_xyz = dynamic_cast<g2o::EdgeSE3PriorXYZ*>(edge);
|
|
|
+ if(edge_priori_xyz) {
|
|
|
+ g2o::VertexSE3* v1 = dynamic_cast<g2o::VertexSE3*>(edge_priori_xyz->vertices()[0]);
|
|
|
+ Eigen::Vector3d pt1 = v1->estimate().translation();
|
|
|
+ Eigen::Vector3d pt2 = edge_priori_xyz->measurement();
|
|
|
+
|
|
|
+ edge_marker.points[i * 2].x = pt1.x();
|
|
|
+ edge_marker.points[i * 2].y = pt1.y();
|
|
|
+ edge_marker.points[i * 2].z = pt1.z() + 0.5;
|
|
|
+ edge_marker.points[i * 2 + 1].x = pt2.x();
|
|
|
+ edge_marker.points[i * 2 + 1].y = pt2.y();
|
|
|
+ edge_marker.points[i * 2 + 1].z = pt2.z();
|
|
|
+
|
|
|
+ edge_marker.colors[i * 2].r = 1.0;
|
|
|
+ edge_marker.colors[i * 2].a = 1.0;
|
|
|
+ edge_marker.colors[i * 2 + 1].r = 1.0;
|
|
|
+ edge_marker.colors[i * 2 + 1].a = 1.0;
|
|
|
+
|
|
|
+ continue;
|
|
|
}
|
|
|
+ }
|
|
|
|
|
|
- double accum_d = keyframe_updater->get_accum_distance(); // 获取累计的运动距离,用于判断关键帧生成的条件
|
|
|
- KeyFrame::Ptr keyframe(new KeyFrame(stamp, odom, accum_d, cloud)); // 创建一个新的关键帧 keyframe,其中包含当前的时间戳 stamp,里程计信息 odom,累计距离 accum_d,以及处理后的点云数据 cloud(这里的处理就是做了个消息类型的转换)
|
|
|
+ // sphere
|
|
|
+ visualization_msgs::Marker& sphere_marker = markers.markers[3];
|
|
|
+ sphere_marker.header.frame_id = "map";
|
|
|
+ sphere_marker.header.stamp = stamp;
|
|
|
+ sphere_marker.ns = "loop_close_radius";
|
|
|
+ sphere_marker.id = 3;
|
|
|
+ sphere_marker.type = visualization_msgs::Marker::SPHERE;
|
|
|
|
|
|
- std::lock_guard<std::mutex> lock(keyframe_queue_mutex); // 使用 std::lock_guard 加锁,确保对关键帧队列 keyframe_queue 的操作是线程安全的
|
|
|
- keyframe_queue.push_back(keyframe); // 将新生成的关键帧 keyframe 推入 keyframe_queue 队列,供后续的处理使用
|
|
|
+ if(!keyframes.empty()) {
|
|
|
+ Eigen::Vector3d pos = keyframes.back()->node->estimate().translation();
|
|
|
+ sphere_marker.pose.position.x = pos.x();
|
|
|
+ sphere_marker.pose.position.y = pos.y();
|
|
|
+ sphere_marker.pose.position.z = pos.z();
|
|
|
+ }
|
|
|
+ sphere_marker.pose.orientation.w = 1.0;
|
|
|
+ sphere_marker.scale.x = sphere_marker.scale.y = sphere_marker.scale.z = loop_detector->get_distance_thresh() * 2.0;
|
|
|
|
|
|
+ sphere_marker.color.r = 1.0;
|
|
|
+ sphere_marker.color.a = 0.3;
|
|
|
|
|
|
+ return markers;
|
|
|
}
|