// SPDX-License-Identifier: BSD-2-Clause

#include <memory>
#include <iostream>

#include <ros/ros.h>
#include <ros/time.h>
#include <ros/duration.h>
#include <pcl_ros/point_cloud.h>
#include <tf_conversions/tf_eigen.h>
#include <tf/transform_listener.h>
#include <tf/transform_broadcaster.h>

#include <std_msgs/Time.h>
#include <nav_msgs/Odometry.h>
#include <sensor_msgs/PointCloud2.h>
#include <geometry_msgs/TransformStamped.h>
#include <geometry_msgs/PoseWithCovarianceStamped.h>

#include <nodelet/nodelet.h>
#include <pluginlib/class_list_macros.h>

#include <pcl/filters/voxel_grid.h>
#include <pcl/filters/passthrough.h>
#include <pcl/filters/approximate_voxel_grid.h>

#include <hdl_graph_slam/ros_utils.hpp>
#include <hdl_graph_slam/registrations.hpp>
#include "hdl_graph_slam/ScanMatchingStatus.h"

#include "sensor_msgs/LaserScan.h"


namespace hdl_graph_slam {

class ScanMatchingOdometryNodelet : public nodelet::Nodelet {
public:
  typedef pcl::PointXYZI PointT;
  EIGEN_MAKE_ALIGNED_OPERATOR_NEW

  ScanMatchingOdometryNodelet() {}
  virtual ~ScanMatchingOdometryNodelet() {}

  virtual void onInit() {  // 初始化函数
    NODELET_DEBUG("initializing scan_matching_odometry_nodelet...");
    nh = getNodeHandle();                 // 节点句柄
    private_nh = getPrivateNodeHandle();  // 私有节点句柄

    initialize_params();  // 参数初始化函数i

    if(private_nh.param<bool>("enable_imu_frontend", false)) {  // .launch中是true,考虑imu的信息,默认是false
      msf_pose_sub = nh.subscribe<geometry_msgs::PoseWithCovarianceStamped>("/msf_core/pose", 1, boost::bind(&ScanMatchingOdometryNodelet::msf_pose_callback, this, _1, false));
      // 这个是实时发布的?
      msf_pose_after_update_sub = nh.subscribe<geometry_msgs::PoseWithCovarianceStamped>("/msf_core/pose_after_update", 1, boost::bind(&ScanMatchingOdometryNodelet::msf_pose_callback, this, _1, true));
      // 这个是某个关键帧更新后发布的?
    }

    points_sub = nh.subscribe("/filtered_points", 256, &ScanMatchingOdometryNodelet::cloud_callback, this);  // 接收过滤后的点云数据
    // points_sub = nh.subscribe("/scan", 256, &ScanMatchingOdometryNodelet::cloud_callback, this);  // 接收过滤后的点云数据
    read_until_pub = nh.advertise<std_msgs::Header>("/scan_matching_odometry/read_until", 32);               //
    odom_pub = nh.advertise<nav_msgs::Odometry>(published_odom_topic, 32);                                   // 发布机器人的里程计信息
    trans_pub = nh.advertise<geometry_msgs::TransformStamped>("/scan_matching_odometry/transform", 32);      //
    status_pub = private_nh.advertise<ScanMatchingStatus>("/scan_matching_odometry/status", 8);              //
    aligned_points_pub = nh.advertise<sensor_msgs::PointCloud2>("/aligned_points", 32);                      // 对齐后的点云
  }


// 只发布三个话题:处理后的激光数据   前后帧合并的激光数据   odom

// 定义一个debug 宏(定义宏),如果是ture,则发布消息,否则不发布

// #define DEBUG 0
// if(DEBUG){

// 雷达厂家会给一个程序,会用一个topic发数据出来

// }



private:
  /**
   * @brief initialize parameters
   */
  void initialize_params() {
    auto& pnh = private_nh;
    published_odom_topic = private_nh.param<std::string>("published_odom_topic", "/odom");
    points_topic = pnh.param<std::string>("points_topic", "/velodyne_points");
    odom_frame_id = pnh.param<std::string>("odom_frame_id", "odom");
    robot_odom_frame_id = pnh.param<std::string>("robot_odom_frame_id", "robot_odom");

    // The minimum tranlational distance and rotation angle between keyframes.
    // If this value is zero, frames are always compared with the previous frame
    keyframe_delta_trans = pnh.param<double>("keyframe_delta_trans", 0.25);  // 三个参数有一个满足,则更新关键帧 keyframe
    keyframe_delta_angle = pnh.param<double>("keyframe_delta_angle", 0.15);
    keyframe_delta_time = pnh.param<double>("keyframe_delta_time", 1.0);

    // Registration validation by thresholding
    transform_thresholding = pnh.param<bool>("transform_thresholding", false);  // .launch 中也是给false
    max_acceptable_trans = pnh.param<double>("max_acceptable_trans", 1.0);
    max_acceptable_angle = pnh.param<double>("max_acceptable_angle", 1.0);

    // select a downsample method (VOXELGRID, APPROX_VOXELGRID, NONE)
    std::string downsample_method = pnh.param<std::string>("downsample_method", "VOXELGRID");  // launch 给的参数是 VOXELGRID

    double downsample_resolution = pnh.param<double>("downsample_resolution", 0.1);  // 体素的大小,决定每个提速立方体的边长    .launch 中给的参数是0.1

    if(downsample_method == "VOXELGRID") {
      // 选用的是这个方法
      std::cout << "downsample: VOXELGRID " << downsample_resolution << std::endl;
      auto voxelgrid = new pcl::VoxelGrid<PointT>();  // 创建体素网格下采样对象

      // 设置体素的长宽高。  体素的大小决定了网络的精细程度,体素越小,下采样后的点云越接近原始点云
      voxelgrid->setLeafSize(downsample_resolution, downsample_resolution, downsample_resolution);
      downsample_filter.reset(voxelgrid);

    } else if(downsample_method == "APPROX_VOXELGRID") {
      std::cout << "downsample: APPROX_VOXELGRID " << downsample_resolution << std::endl;
      pcl::ApproximateVoxelGrid<PointT>::Ptr approx_voxelgrid(new pcl::ApproximateVoxelGrid<PointT>());
      approx_voxelgrid->setLeafSize(downsample_resolution, downsample_resolution, downsample_resolution);
      downsample_filter = approx_voxelgrid;
    } else {
      if(downsample_method != "NONE") {
        std::cerr << "warning: unknown downsampling type (" << downsample_method << ")" << std::endl;
        std::cerr << "       : use passthrough filter" << std::endl;
      }
      std::cout << "downsample: NONE" << std::endl;
      pcl::PassThrough<PointT>::Ptr passthrough(new pcl::PassThrough<PointT>());
      downsample_filter = passthrough;
    }
    registration = select_registration_method(pnh);

    /*
     三种下采样方法的基本原理:
    VOXELGRID:
        基本原理: 体素网格(VoxelGrid)下采样是一种常见的点云下采样方法。它将三维空间划分为一个由体素(三维像素)组成的网格,并在每个体素内部选择一个代表性点(通常是中心点或最接近中心的点),从而减少点的数量。所有在同一个体素内的点都被这个代表性点替代。
        特点: 这种方法简单有效,可以均匀地减少点数,但可能会丢失一些细节。

    APPROX_VOXELGRID:
        基本原理: 近似体素网格(ApproximateVoxelGrid)下采样与体素网格类似,但它在处理每个体素内的点时采用更简单的方法来选择代表性点,例如选择包含在体素内的最大点或平均位置点。这种方法的计算效率更高,但可能不如体素网格下采样精确。
        特点: 计算速度比VOXELGRID快,但精度较低,适用于对处理速度要求较高的场景。

    PASSTHROUGH:
        基本原理: 通道(PassThrough)下采样不是通过空间划分来减少点数,而是根据点的某些属性(如位置或强度)来筛选点。例如,可以设置一个过滤条件,只保留在特定高度范围内的点,或者只保留某个方向上的点。
        特点: 允许用户定义更灵活的筛选条件,但不会像体素网格方法那样均匀地减少点数。如果没有指定下采样方法,或者指定的方法不被识别,就会使用通道过滤器作为默认方法。
     */
  }

  /**
   * @brief callback for point clouds
   * @param cloud_msg  point cloud msg
   */
  
  void cloud_callback(const sensor_msgs::PointCloud2ConstPtr& cloud_msg) {  // cloud_msg:滤波后的点云数据
    if(!ros::ok()) {
      return;
    }

    pcl::PointCloud<PointT>::Ptr cloud(new pcl::PointCloud<PointT>());  // 创建一个 pcl::PointCloud<PointT> 类型的指针
    pcl::fromROSMsg(*cloud_msg, *cloud);                                // 将ROS消息格式的点云(*cloud_msg)转换为PCL(Point Cloud Library)格式的点云(*cloud)

    Eigen::Matrix4f pose = matching(cloud_msg->header.stamp, cloud);              // 点云匹配函数,返回
    publish_odometry(cloud_msg->header.stamp, cloud_msg->header.frame_id, pose);  // 发布里程计数据

    // In offline estimation, point clouds until the published time will be supplied
    std_msgs::HeaderPtr read_until(new std_msgs::Header());
    read_until->frame_id = points_topic;
    read_until->stamp = cloud_msg->header.stamp + ros::Duration(1, 0);
    read_until_pub.publish(read_until);

    read_until->frame_id = "/filtered_points";
    read_until_pub.publish(read_until);
  }

  void msf_pose_callback(const geometry_msgs::PoseWithCovarianceStampedConstPtr& pose_msg, bool after_update) {  // 多状态 MSF 的回调函数,接受MSF里程计的位置信息,并根据是否为更新后的位置,存储在不同变量中
    if(after_update) {
      msf_pose_after_update = pose_msg;
    } else {
      msf_pose = pose_msg;
    }
  }

  /**
   * @brief downsample a point cloud
   * @param cloud  input cloud
   * @return downsampled point cloud
   */
  pcl::PointCloud<PointT>::ConstPtr downsample(const pcl::PointCloud<PointT>::ConstPtr& cloud) const {  // 对点云数据进行向下采样,减少点的数量以提高处理速度
    if(!downsample_filter) {
      return cloud;
    }

    pcl::PointCloud<PointT>::Ptr filtered(new pcl::PointCloud<PointT>());  // 创建一个新的点云对象,用来存储下采样后的点云数据
    downsample_filter->setInputCloud(cloud);
    downsample_filter->filter(*filtered);

    return filtered;
  }

  /**
   * @brief estimate the relative pose between an input cloud and a keyframe cloud
   * @param stamp  the timestamp of the input cloud
   * @param cloud  the input cloud
   * @return the relative pose between the input cloud and the keyframe cloud
   */
  Eigen::Matrix4f matching(const ros::Time& stamp, const pcl::PointCloud<PointT>::ConstPtr& cloud) {  // 执行扫描匹配算法,估计输入点云和关键帧之间的相对位置

    if(!keyframe) {                            // 判断 keyframe 是否为空指针,是的话说明还没有初始化关键真
      prev_time = ros::Time();                 //
      prev_trans.setIdentity();                // 设置为单位矩阵,表示:与上一次的位资没有发生变化
      keyframe_pose.setIdentity();             // 关键帧的初始位资
      keyframe_stamp = stamp;                  // 关键帧的时间戳
      keyframe = downsample(cloud);            // 对点云数据进行下采样,减少点的数量,提高处理效率和精度
      registration->setInputTarget(keyframe);  // 将 keyframe 设置成关键帧
      return Eigen::Matrix4f::Identity();      // 没有之前的位资信息,假设与上次位资没有发生变化,返回单位矩阵

      // registration 对象负责计算输入点云(cloud)与已有关键帧(keyframe)之间的相对变换。这种变换估算允许系统理解传感器(如激光雷达)在两次扫描之间的移动
    }

    auto filtered = downsample(cloud);       // 下采样
    registration->setInputSource(filtered);  // 把点云数据给到 registration

    std::string msf_source;                                       // 记录初始位资估计的来源(imu 或者 odometry)
    Eigen::Isometry3f msf_delta = Eigen::Isometry3f::Identity();  // 三维仿射变换的单位矩阵,用于存储上一帧到当前帧的位资变化,3表示三维
    // 缩放变换和旋转变换称为线性变换(linear transform)   线性变换和平移变换统称为仿射变换(affine transfrom)

    if(private_nh.param<bool>("enable_imu_frontend", false)) {  // .launch 中是 true
      if(msf_pose && msf_pose->header.stamp > keyframe_stamp && msf_pose_after_update && msf_pose_after_update->header.stamp > keyframe_stamp) {
        // 如果 msf_pose 不是空指针,   msf_pose:imu 数据
        // 如果 msf_pose 的数据比当前关键帧的数据更新
        // 如果 msf_pose_after_update 不是空指针
        Eigen::Isometry3d pose0 = pose2isometry(msf_pose_after_update->pose.pose);  // 函数pose2isometry()  将机器人在世界坐标系中的位置和方向 转换成对应的 仿射变换矩阵
        Eigen::Isometry3d pose1 = pose2isometry(msf_pose->pose.pose);
        Eigen::Isometry3d delta = pose0.inverse() * pose1;  // 相乘得到一个描述从pose0到pose1的变换的3D仿射变换

        msf_source = "imu";
        msf_delta = delta.cast<float>();  // 将double转换成float
      } else {
        std::cerr << "msf data is too old" << std::endl;
      }
    }                                                                                                  //
    else if(private_nh.param<bool>("enable_robot_odometry_init_guess", false) && !prev_time.isZero())  // .launch 给的参数是 false     !prev_time.isZero() 判断是不是有效的时间戳
    {
      tf::StampedTransform transform;  // 声明一个变量,用来存储两个坐标帧之间的变换信息

      if(tf_listener.waitForTransform(cloud->header.frame_id, stamp, cloud->header.frame_id, prev_time, robot_odom_frame_id, ros::Duration(0)))
      // 将cloud->header.frame_id 坐标帧变换到 robot_odom_frame_id 坐标帧
      // waitForTransform 方法等待直到可以计算出这个变换,或者直到超时(这里设置的超时时间为0,意味着无限等待)   stamp 是当前的时间戳
      {
        tf_listener.lookupTransform(cloud->header.frame_id, stamp, cloud->header.frame_id, prev_time, robot_odom_frame_id, transform);
        // 如果waitForTransform成功,那么调用lookupTransform方法来获取实际的变换,并将其存储在transform变量中
      }

      else if(tf_listener.waitForTransform(cloud->header.frame_id, ros::Time(0), cloud->header.frame_id, prev_time, robot_odom_frame_id, ros::Duration(0)))
      // 如果上面的变换失败了,再尝试一遍,但参考时间改成 ros::Time(0)
      {
        tf_listener.lookupTransform(cloud->header.frame_id, ros::Time(0), cloud->header.frame_id, prev_time, robot_odom_frame_id, transform);
      }

      if(transform.stamp_.isZero()) {
        NODELET_WARN_STREAM("failed to look up transform between " << cloud->header.frame_id << " and " << robot_odom_frame_id);
      } else {
        msf_source = "odometry";
        msf_delta = tf2isometry(transform).cast<float>();  // 将 transform 转换为 Eigen::Isometry3f 类型(3D仿射变换,使用float类型)
      }
    }

    pcl::PointCloud<PointT>::Ptr aligned(new pcl::PointCloud<PointT>());  // 创建一个新的点云对象aligned,用于存储对齐后的点云数据
    registration->align(*aligned, prev_trans * msf_delta.matrix());       // 用 registration 来对齐点云, 如果没有imu或者odom信息, msf_delta 是单位矩阵, 即将观测到的点云数据对齐到关键帧?

    publish_scan_matching_status(stamp, cloud->header.frame_id, aligned, msf_source, msf_delta);  // 发布扫描匹配的状态信息,包括时间戳、坐标帧ID、对齐后的点云、位姿来源和位姿更新

    if(!registration->hasConverged()) {  // 检查扫描匹配是否收敛(是否匹配成功?)。如果没有收敛,输出信息并返回上一次的位姿
      NODELET_INFO_STREAM("scan matching has not converged!!");
      NODELET_INFO_STREAM("ignore this frame(" << stamp << ")");
      return keyframe_pose * prev_trans;
    }

    Eigen::Matrix4f trans = registration->getFinalTransformation();  // 获得当前点云和上一帧点云 关键帧 的仿射变换
    Eigen::Matrix4f odom = keyframe_pose * trans;                    // 算出来 odom

    if(transform_thresholding) {  // .launch 设置为false  默认为 false
      // 如果启用了变换阈值判断,计算本次变换的平移和旋转,并与最大可接受值进行比较。如果超出阈值,输出信息并返回上一次的位姿
      // 即如果某两帧的点云差别特别大,忽略后面这一帧的匹配,返回上一个姿态的 odom
      Eigen::Matrix4f delta = prev_trans.inverse() * trans;
      double dx = delta.block<3, 1>(0, 3).norm();
      double da = std::acos(Eigen::Quaternionf(delta.block<3, 3>(0, 0)).w());

      if(dx > max_acceptable_trans || da > max_acceptable_angle) {
        NODELET_INFO_STREAM("too large transform!!  " << dx << "[m] " << da << "[rad]");
        NODELET_INFO_STREAM("ignore this frame(" << stamp << ")");
        return keyframe_pose * prev_trans;
      }
    }

    prev_time = stamp;   // 当前帧的时间戳
    prev_trans = trans;  // 当前帧的仿射变换

    auto keyframe_trans = matrix2transform(stamp, keyframe_pose, odom_frame_id, "keyframe");  // 将变换矩阵转换为tf::Transform对象,用于发布关键帧的变换
    keyframe_broadcaster.sendTransform(keyframe_trans);                                       // 发布关键帧的变换(这个是发送到哪里?  )

    double delta_trans = trans.block<3, 1>(0, 3).norm();                              // 计算 当前帧 与 关键帧 变换的 平移距离
    double delta_angle = std::acos(Eigen::Quaternionf(trans.block<3, 3>(0, 0)).w());  // 计算 当前帧 与 关键帧 变换的 旋转角度
    double delta_time = (stamp - keyframe_stamp).toSec();                             // 计算 当前帧 与 关键帧 变换的 时间差
    if(delta_trans > keyframe_delta_trans || delta_angle > keyframe_delta_angle || delta_time > keyframe_delta_time) {  // 如果有一个超过阈值,更新关键帧
      keyframe = filtered;
      registration->setInputTarget(keyframe);

      keyframe_pose = odom;
      keyframe_stamp = stamp;
      prev_time = stamp;
      prev_trans.setIdentity();
    }

    if(aligned_points_pub.getNumSubscribers() > 0) {  // 如果有节点订阅了对齐后的点云,进行变换并发布
      pcl::transformPointCloud(*cloud, *aligned, odom);
      aligned->header.frame_id = odom_frame_id;
      aligned_points_pub.publish(*aligned);
    }
    // std::cout << "The matrix odom is: \n" << odom << std::endl;
    return odom;  // 返回里程计
  }

  /**
   * @brief publish odometry
   * @param stamp  timestamp
   * @param pose   odometry pose to be published
   */
  void publish_odometry(const ros::Time& stamp, const std::string& base_frame_id, const Eigen::Matrix4f& pose) {  // 发布里程计数据
    // publish transform stamped for IMU integration
    geometry_msgs::TransformStamped odom_trans = matrix2transform(stamp, pose, odom_frame_id, base_frame_id);
    trans_pub.publish(odom_trans);

    // broadcast the transform over tf
    odom_broadcaster.sendTransform(odom_trans);

    // publish the transform
    nav_msgs::Odometry odom;
    odom.header.stamp = stamp;
    odom.header.frame_id = odom_frame_id;

    odom.pose.pose.position.x = pose(0, 3);
    odom.pose.pose.position.y = pose(1, 3);
    odom.pose.pose.position.z = pose(2, 3);
    odom.pose.pose.orientation = odom_trans.transform.rotation;

    odom.child_frame_id = base_frame_id;
    odom.twist.twist.linear.x = 0.0;
    odom.twist.twist.linear.y = 0.0;
    odom.twist.twist.angular.z = 0.0;

    odom_pub.publish(odom);
  }

  /**
   * @brief publish scan matching status
   */
  void publish_scan_matching_status(const ros::Time& stamp, const std::string& frame_id, pcl::PointCloud<pcl::PointXYZI>::ConstPtr aligned, const std::string& msf_source, const Eigen::Isometry3f& msf_delta) {
    // 发布扫描的状态,包括匹配是否收敛、匹配误差、内点比例、相对位置等信息
    if(!status_pub.getNumSubscribers()) {
      return;
    }

    ScanMatchingStatus status;
    status.header.frame_id = frame_id;
    status.header.stamp = stamp;
    status.has_converged = registration->hasConverged();
    status.matching_error = registration->getFitnessScore();

    const double max_correspondence_dist = 0.5;

    int num_inliers = 0;
    std::vector<int> k_indices;
    std::vector<float> k_sq_dists;
    for(int i = 0; i < aligned->size(); i++) {
      const auto& pt = aligned->at(i);
      registration->getSearchMethodTarget()->nearestKSearch(pt, 1, k_indices, k_sq_dists);
      if(k_sq_dists[0] < max_correspondence_dist * max_correspondence_dist) {
        num_inliers++;
      }
    }
    status.inlier_fraction = static_cast<float>(num_inliers) / aligned->size();

    status.relative_pose = isometry2pose(Eigen::Isometry3f(registration->getFinalTransformation()).cast<double>());

    if(!msf_source.empty()) {
      status.prediction_labels.resize(1);
      status.prediction_labels[0].data = msf_source;

      status.prediction_errors.resize(1);
      Eigen::Isometry3f error = Eigen::Isometry3f(registration->getFinalTransformation()).inverse() * msf_delta;
      status.prediction_errors[0] = isometry2pose(error.cast<double>());
    }

    status_pub.publish(status);
  }

private:
  // ROS topics
  ros::NodeHandle nh;
  ros::NodeHandle private_nh;

  ros::Subscriber points_sub;
  ros::Subscriber msf_pose_sub;
  ros::Subscriber msf_pose_after_update_sub;

  ros::Publisher odom_pub;
  ros::Publisher trans_pub;
  ros::Publisher aligned_points_pub;
  ros::Publisher status_pub;
  tf::TransformListener tf_listener;
  tf::TransformBroadcaster odom_broadcaster;
  tf::TransformBroadcaster keyframe_broadcaster;

  std::string published_odom_topic;
  std::string points_topic;
  std::string odom_frame_id;
  std::string robot_odom_frame_id;
  ros::Publisher read_until_pub;

  // keyframe parameters
  double keyframe_delta_trans;  // minimum distance between keyframes
  double keyframe_delta_angle;  //
  double keyframe_delta_time;   //

  // registration validation by thresholding
  bool transform_thresholding;  //
  double max_acceptable_trans;  //
  double max_acceptable_angle;

  // odometry calculation
  geometry_msgs::PoseWithCovarianceStampedConstPtr msf_pose;
  geometry_msgs::PoseWithCovarianceStampedConstPtr msf_pose_after_update;

  ros::Time prev_time;                         // 当前关键帧的时间戳?
  Eigen::Matrix4f prev_trans;                  // 地图起点到当前   帧  的放射变换
  Eigen::Matrix4f keyframe_pose;               // 地图起点到当前 关键帧 的仿射变换
  ros::Time keyframe_stamp;                    // 关键帧的时间戳
  pcl::PointCloud<PointT>::ConstPtr keyframe;  // 关键帧

  //
  pcl::Filter<PointT>::Ptr downsample_filter;
  pcl::Registration<PointT, PointT>::Ptr registration;
};

}  // namespace hdl_graph_slam

PLUGINLIB_EXPORT_CLASS(hdl_graph_slam::ScanMatchingOdometryNodelet, nodelet::Nodelet)