| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324 | //  Copyright (c) 2011-present, Facebook, Inc.  All rights reserved.//  This source code is licensed under both the GPLv2 (found in the//  COPYING file in the root directory) and Apache 2.0 License//  (found in the LICENSE.Apache file in the root directory).#ifndef GFLAGS#include <cstdio>int main() {  fprintf(stderr, "Please install gflags to run this test... Skipping...\n");  return 0;}#else#include <algorithm>#include <atomic>#include <cinttypes>#include <functional>#include <memory>#include <thread>#include <vector>#include "dynamic_bloom.h"#include "logging/logging.h"#include "memory/arena.h"#include "port/port.h"#include "test_util/testharness.h"#include "test_util/testutil.h"#include "util/gflags_compat.h"#include "util/stop_watch.h"using GFLAGS_NAMESPACE::ParseCommandLineFlags;DEFINE_int32(bits_per_key, 10, "");DEFINE_int32(num_probes, 6, "");DEFINE_bool(enable_perf, false, "");namespace ROCKSDB_NAMESPACE {struct KeyMaker {  uint64_t a;  uint64_t b;  // Sequential, within a hash function block  inline Slice Seq(uint64_t i) {    a = i;    return Slice(reinterpret_cast<char *>(&a), sizeof(a));  }  // Not quite sequential, varies across hash function blocks  inline Slice Nonseq(uint64_t i) {    a = i;    b = i * 123;    return Slice(reinterpret_cast<char *>(this), sizeof(*this));  }  inline Slice Key(uint64_t i, bool nonseq) {    return nonseq ? Nonseq(i) : Seq(i);  }};class DynamicBloomTest : public testing::Test {};TEST_F(DynamicBloomTest, EmptyFilter) {  Arena arena;  DynamicBloom bloom1(&arena, 100, 2);  ASSERT_TRUE(!bloom1.MayContain("hello"));  ASSERT_TRUE(!bloom1.MayContain("world"));  DynamicBloom bloom2(&arena, CACHE_LINE_SIZE * 8 * 2 - 1, 2);  ASSERT_TRUE(!bloom2.MayContain("hello"));  ASSERT_TRUE(!bloom2.MayContain("world"));}TEST_F(DynamicBloomTest, Small) {  Arena arena;  DynamicBloom bloom1(&arena, 100, 2);  bloom1.Add("hello");  bloom1.Add("world");  ASSERT_TRUE(bloom1.MayContain("hello"));  ASSERT_TRUE(bloom1.MayContain("world"));  ASSERT_TRUE(!bloom1.MayContain("x"));  ASSERT_TRUE(!bloom1.MayContain("foo"));  DynamicBloom bloom2(&arena, CACHE_LINE_SIZE * 8 * 2 - 1, 2);  bloom2.Add("hello");  bloom2.Add("world");  ASSERT_TRUE(bloom2.MayContain("hello"));  ASSERT_TRUE(bloom2.MayContain("world"));  ASSERT_TRUE(!bloom2.MayContain("x"));  ASSERT_TRUE(!bloom2.MayContain("foo"));}TEST_F(DynamicBloomTest, SmallConcurrentAdd) {  Arena arena;  DynamicBloom bloom1(&arena, 100, 2);  bloom1.AddConcurrently("hello");  bloom1.AddConcurrently("world");  ASSERT_TRUE(bloom1.MayContain("hello"));  ASSERT_TRUE(bloom1.MayContain("world"));  ASSERT_TRUE(!bloom1.MayContain("x"));  ASSERT_TRUE(!bloom1.MayContain("foo"));  DynamicBloom bloom2(&arena, CACHE_LINE_SIZE * 8 * 2 - 1, 2);  bloom2.AddConcurrently("hello");  bloom2.AddConcurrently("world");  ASSERT_TRUE(bloom2.MayContain("hello"));  ASSERT_TRUE(bloom2.MayContain("world"));  ASSERT_TRUE(!bloom2.MayContain("x"));  ASSERT_TRUE(!bloom2.MayContain("foo"));}static uint32_t NextNum(uint32_t num) {  if (num < 10) {    num += 1;  } else if (num < 100) {    num += 10;  } else if (num < 1000) {    num += 100;  } else {    num = num * 26 / 10;  }  return num;}TEST_F(DynamicBloomTest, VaryingLengths) {  KeyMaker km;  // Count number of filters that significantly exceed the false positive rate  int mediocre_filters = 0;  int good_filters = 0;  uint32_t num_probes = static_cast<uint32_t>(FLAGS_num_probes);  fprintf(stderr, "bits_per_key: %d  num_probes: %d\n", FLAGS_bits_per_key,          num_probes);  // NB: FP rate impact of 32-bit hash is noticeable starting around 10M keys.  // But that effect is hidden if using sequential keys (unique hashes).  for (bool nonseq : {false, true}) {    const uint32_t max_num = FLAGS_enable_perf ? 40000000 : 400000;    for (uint32_t num = 1; num <= max_num; num = NextNum(num)) {      uint32_t bloom_bits = 0;      Arena arena;      bloom_bits = num * FLAGS_bits_per_key;      DynamicBloom bloom(&arena, bloom_bits, num_probes);      for (uint64_t i = 0; i < num; i++) {        bloom.Add(km.Key(i, nonseq));        ASSERT_TRUE(bloom.MayContain(km.Key(i, nonseq)));      }      // All added keys must match      for (uint64_t i = 0; i < num; i++) {        ASSERT_TRUE(bloom.MayContain(km.Key(i, nonseq)));      }      // Check false positive rate      int result = 0;      for (uint64_t i = 0; i < 30000; i++) {        if (bloom.MayContain(km.Key(i + 1000000000, nonseq))) {          result++;        }      }      double rate = result / 30000.0;      fprintf(stderr,              "False positives (%s keys): "              "%5.2f%% @ num = %6u, bloom_bits = %6u\n",              nonseq ? "nonseq" : "seq", rate * 100.0, num, bloom_bits);      if (rate > 0.0125)        mediocre_filters++;  // Allowed, but not too often      else        good_filters++;    }  }  fprintf(stderr, "Filters: %d good, %d mediocre\n", good_filters,          mediocre_filters);  ASSERT_LE(mediocre_filters, good_filters / 25);}TEST_F(DynamicBloomTest, perf) {  KeyMaker km;  StopWatchNano timer(Env::Default());  uint32_t num_probes = static_cast<uint32_t>(FLAGS_num_probes);  if (!FLAGS_enable_perf) {    return;  }  for (uint32_t m = 1; m <= 8; ++m) {    Arena arena;    const uint32_t num_keys = m * 8 * 1024 * 1024;    fprintf(stderr, "testing %" PRIu32 "M keys\n", m * 8);    DynamicBloom std_bloom(&arena, num_keys * 10, num_probes);    timer.Start();    for (uint64_t i = 1; i <= num_keys; ++i) {      std_bloom.Add(km.Seq(i));    }    uint64_t elapsed = timer.ElapsedNanos();    fprintf(stderr, "dynamic bloom, avg add latency %3g\n",            static_cast<double>(elapsed) / num_keys);    uint32_t count = 0;    timer.Start();    for (uint64_t i = 1; i <= num_keys; ++i) {      if (std_bloom.MayContain(km.Seq(i))) {        ++count;      }    }    ASSERT_EQ(count, num_keys);    elapsed = timer.ElapsedNanos();    assert(count > 0);    fprintf(stderr, "dynamic bloom, avg query latency %3g\n",            static_cast<double>(elapsed) / count);  }}TEST_F(DynamicBloomTest, concurrent_with_perf) {  uint32_t num_probes = static_cast<uint32_t>(FLAGS_num_probes);  uint32_t m_limit = FLAGS_enable_perf ? 8 : 1;  uint32_t num_threads = 4;  std::vector<port::Thread> threads;  // NB: Uses sequential keys for speed, but that hides the FP rate  // impact of 32-bit hash, which is noticeable starting around 10M keys  // when they vary across hashing blocks.  for (uint32_t m = 1; m <= m_limit; ++m) {    Arena arena;    const uint32_t num_keys = m * 8 * 1024 * 1024;    fprintf(stderr, "testing %" PRIu32 "M keys\n", m * 8);    DynamicBloom std_bloom(&arena, num_keys * 10, num_probes);    std::atomic<uint64_t> elapsed(0);    std::function<void(size_t)> adder([&](size_t t) {      KeyMaker km;      StopWatchNano timer(Env::Default());      timer.Start();      for (uint64_t i = 1 + t; i <= num_keys; i += num_threads) {        std_bloom.AddConcurrently(km.Seq(i));      }      elapsed += timer.ElapsedNanos();    });    for (size_t t = 0; t < num_threads; ++t) {      threads.emplace_back(adder, t);    }    while (threads.size() > 0) {      threads.back().join();      threads.pop_back();    }    fprintf(stderr,            "dynamic bloom, avg parallel add latency %3g"            " nanos/key\n",            static_cast<double>(elapsed) / num_threads / num_keys);    elapsed = 0;    std::function<void(size_t)> hitter([&](size_t t) {      KeyMaker km;      StopWatchNano timer(Env::Default());      timer.Start();      for (uint64_t i = 1 + t; i <= num_keys; i += num_threads) {        bool f = std_bloom.MayContain(km.Seq(i));        ASSERT_TRUE(f);      }      elapsed += timer.ElapsedNanos();    });    for (size_t t = 0; t < num_threads; ++t) {      threads.emplace_back(hitter, t);    }    while (threads.size() > 0) {      threads.back().join();      threads.pop_back();    }    fprintf(stderr,            "dynamic bloom, avg parallel hit latency %3g"            " nanos/key\n",            static_cast<double>(elapsed) / num_threads / num_keys);    elapsed = 0;    std::atomic<uint32_t> false_positives(0);    std::function<void(size_t)> misser([&](size_t t) {      KeyMaker km;      StopWatchNano timer(Env::Default());      timer.Start();      for (uint64_t i = num_keys + 1 + t; i <= 2 * num_keys; i += num_threads) {        bool f = std_bloom.MayContain(km.Seq(i));        if (f) {          ++false_positives;        }      }      elapsed += timer.ElapsedNanos();    });    for (size_t t = 0; t < num_threads; ++t) {      threads.emplace_back(misser, t);    }    while (threads.size() > 0) {      threads.back().join();      threads.pop_back();    }    fprintf(stderr,            "dynamic bloom, avg parallel miss latency %3g"            " nanos/key, %f%% false positive rate\n",            static_cast<double>(elapsed) / num_threads / num_keys,            false_positives.load() * 100.0 / num_keys);  }}}  // namespace ROCKSDB_NAMESPACEint main(int argc, char** argv) {  ::testing::InitGoogleTest(&argc, argv);  ParseCommandLineFlags(&argc, &argv, true);  return RUN_ALL_TESTS();}#endif  // GFLAGS
 |