| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997 |
- // Copyright (c) 2011-present, Facebook, Inc. All rights reserved.
- // This source code is licensed under both the GPLv2 (found in the
- // COPYING file in the root directory) and Apache 2.0 License
- // (found in the LICENSE.Apache file in the root directory).
- //
- // Copyright (c) 2011 The LevelDB Authors. All rights reserved. Use of
- // this source code is governed by a BSD-style license that can be found
- // in the LICENSE file. See the AUTHORS file for names of contributors.
- //
- // InlineSkipList is derived from SkipList (skiplist.h), but it optimizes
- // the memory layout by requiring that the key storage be allocated through
- // the skip list instance. For the common case of SkipList<const char*,
- // Cmp> this saves 1 pointer per skip list node and gives better cache
- // locality, at the expense of wasted padding from using AllocateAligned
- // instead of Allocate for the keys. The unused padding will be from
- // 0 to sizeof(void*)-1 bytes, and the space savings are sizeof(void*)
- // bytes, so despite the padding the space used is always less than
- // SkipList<const char*, ..>.
- //
- // Thread safety -------------
- //
- // Writes via Insert require external synchronization, most likely a mutex.
- // InsertConcurrently can be safely called concurrently with reads and
- // with other concurrent inserts. Reads require a guarantee that the
- // InlineSkipList will not be destroyed while the read is in progress.
- // Apart from that, reads progress without any internal locking or
- // synchronization.
- //
- // Invariants:
- //
- // (1) Allocated nodes are never deleted until the InlineSkipList is
- // destroyed. This is trivially guaranteed by the code since we never
- // delete any skip list nodes.
- //
- // (2) The contents of a Node except for the next/prev pointers are
- // immutable after the Node has been linked into the InlineSkipList.
- // Only Insert() modifies the list, and it is careful to initialize a
- // node and use release-stores to publish the nodes in one or more lists.
- //
- // ... prev vs. next pointer ordering ...
- //
- #pragma once
- #include <assert.h>
- #include <stdlib.h>
- #include <algorithm>
- #include <atomic>
- #include <type_traits>
- #include "memory/allocator.h"
- #include "port/likely.h"
- #include "port/port.h"
- #include "rocksdb/slice.h"
- #include "util/coding.h"
- #include "util/random.h"
- namespace ROCKSDB_NAMESPACE {
- template <class Comparator>
- class InlineSkipList {
- private:
- struct Node;
- struct Splice;
- public:
- using DecodedKey = \
- typename std::remove_reference<Comparator>::type::DecodedType;
- static const uint16_t kMaxPossibleHeight = 32;
- // Create a new InlineSkipList object that will use "cmp" for comparing
- // keys, and will allocate memory using "*allocator". Objects allocated
- // in the allocator must remain allocated for the lifetime of the
- // skiplist object.
- explicit InlineSkipList(Comparator cmp, Allocator* allocator,
- int32_t max_height = 12,
- int32_t branching_factor = 4);
- // No copying allowed
- InlineSkipList(const InlineSkipList&) = delete;
- InlineSkipList& operator=(const InlineSkipList&) = delete;
- // Allocates a key and a skip-list node, returning a pointer to the key
- // portion of the node. This method is thread-safe if the allocator
- // is thread-safe.
- char* AllocateKey(size_t key_size);
- // Allocate a splice using allocator.
- Splice* AllocateSplice();
- // Allocate a splice on heap.
- Splice* AllocateSpliceOnHeap();
- // Inserts a key allocated by AllocateKey, after the actual key value
- // has been filled in.
- //
- // REQUIRES: nothing that compares equal to key is currently in the list.
- // REQUIRES: no concurrent calls to any of inserts.
- bool Insert(const char* key);
- // Inserts a key allocated by AllocateKey with a hint of last insert
- // position in the skip-list. If hint points to nullptr, a new hint will be
- // populated, which can be used in subsequent calls.
- //
- // It can be used to optimize the workload where there are multiple groups
- // of keys, and each key is likely to insert to a location close to the last
- // inserted key in the same group. One example is sequential inserts.
- //
- // REQUIRES: nothing that compares equal to key is currently in the list.
- // REQUIRES: no concurrent calls to any of inserts.
- bool InsertWithHint(const char* key, void** hint);
- // Like InsertConcurrently, but with a hint
- //
- // REQUIRES: nothing that compares equal to key is currently in the list.
- // REQUIRES: no concurrent calls that use same hint
- bool InsertWithHintConcurrently(const char* key, void** hint);
- // Like Insert, but external synchronization is not required.
- bool InsertConcurrently(const char* key);
- // Inserts a node into the skip list. key must have been allocated by
- // AllocateKey and then filled in by the caller. If UseCAS is true,
- // then external synchronization is not required, otherwise this method
- // may not be called concurrently with any other insertions.
- //
- // Regardless of whether UseCAS is true, the splice must be owned
- // exclusively by the current thread. If allow_partial_splice_fix is
- // true, then the cost of insertion is amortized O(log D), where D is
- // the distance from the splice to the inserted key (measured as the
- // number of intervening nodes). Note that this bound is very good for
- // sequential insertions! If allow_partial_splice_fix is false then
- // the existing splice will be ignored unless the current key is being
- // inserted immediately after the splice. allow_partial_splice_fix ==
- // false has worse running time for the non-sequential case O(log N),
- // but a better constant factor.
- template <bool UseCAS>
- bool Insert(const char* key, Splice* splice, bool allow_partial_splice_fix);
- // Returns true iff an entry that compares equal to key is in the list.
- bool Contains(const char* key) const;
- // Return estimated number of entries smaller than `key`.
- uint64_t EstimateCount(const char* key) const;
- // Validate correctness of the skip-list.
- void TEST_Validate() const;
- // Iteration over the contents of a skip list
- class Iterator {
- public:
- // Initialize an iterator over the specified list.
- // The returned iterator is not valid.
- explicit Iterator(const InlineSkipList* list);
- // Change the underlying skiplist used for this iterator
- // This enables us not changing the iterator without deallocating
- // an old one and then allocating a new one
- void SetList(const InlineSkipList* list);
- // Returns true iff the iterator is positioned at a valid node.
- bool Valid() const;
- // Returns the key at the current position.
- // REQUIRES: Valid()
- const char* key() const;
- // Advances to the next position.
- // REQUIRES: Valid()
- void Next();
- // Advances to the previous position.
- // REQUIRES: Valid()
- void Prev();
- // Advance to the first entry with a key >= target
- void Seek(const char* target);
- // Retreat to the last entry with a key <= target
- void SeekForPrev(const char* target);
- // Position at the first entry in list.
- // Final state of iterator is Valid() iff list is not empty.
- void SeekToFirst();
- // Position at the last entry in list.
- // Final state of iterator is Valid() iff list is not empty.
- void SeekToLast();
- private:
- const InlineSkipList* list_;
- Node* node_;
- // Intentionally copyable
- };
- private:
- const uint16_t kMaxHeight_;
- const uint16_t kBranching_;
- const uint32_t kScaledInverseBranching_;
- Allocator* const allocator_; // Allocator used for allocations of nodes
- // Immutable after construction
- Comparator const compare_;
- Node* const head_;
- // Modified only by Insert(). Read racily by readers, but stale
- // values are ok.
- std::atomic<int> max_height_; // Height of the entire list
- // seq_splice_ is a Splice used for insertions in the non-concurrent
- // case. It caches the prev and next found during the most recent
- // non-concurrent insertion.
- Splice* seq_splice_;
- inline int GetMaxHeight() const {
- return max_height_.load(std::memory_order_relaxed);
- }
- int RandomHeight();
- Node* AllocateNode(size_t key_size, int height);
- bool Equal(const char* a, const char* b) const {
- return (compare_(a, b) == 0);
- }
- bool LessThan(const char* a, const char* b) const {
- return (compare_(a, b) < 0);
- }
- // Return true if key is greater than the data stored in "n". Null n
- // is considered infinite. n should not be head_.
- bool KeyIsAfterNode(const char* key, Node* n) const;
- bool KeyIsAfterNode(const DecodedKey& key, Node* n) const;
- // Returns the earliest node with a key >= key.
- // Return nullptr if there is no such node.
- Node* FindGreaterOrEqual(const char* key) const;
- // Return the latest node with a key < key.
- // Return head_ if there is no such node.
- // Fills prev[level] with pointer to previous node at "level" for every
- // level in [0..max_height_-1], if prev is non-null.
- Node* FindLessThan(const char* key, Node** prev = nullptr) const;
- // Return the latest node with a key < key on bottom_level. Start searching
- // from root node on the level below top_level.
- // Fills prev[level] with pointer to previous node at "level" for every
- // level in [bottom_level..top_level-1], if prev is non-null.
- Node* FindLessThan(const char* key, Node** prev, Node* root, int top_level,
- int bottom_level) const;
- // Return the last node in the list.
- // Return head_ if list is empty.
- Node* FindLast() const;
- // Traverses a single level of the list, setting *out_prev to the last
- // node before the key and *out_next to the first node after. Assumes
- // that the key is not present in the skip list. On entry, before should
- // point to a node that is before the key, and after should point to
- // a node that is after the key. after should be nullptr if a good after
- // node isn't conveniently available.
- template<bool prefetch_before>
- void FindSpliceForLevel(const DecodedKey& key, Node* before, Node* after, int level,
- Node** out_prev, Node** out_next);
- // Recomputes Splice levels from highest_level (inclusive) down to
- // lowest_level (inclusive).
- void RecomputeSpliceLevels(const DecodedKey& key, Splice* splice,
- int recompute_level);
- };
- // Implementation details follow
- template <class Comparator>
- struct InlineSkipList<Comparator>::Splice {
- // The invariant of a Splice is that prev_[i+1].key <= prev_[i].key <
- // next_[i].key <= next_[i+1].key for all i. That means that if a
- // key is bracketed by prev_[i] and next_[i] then it is bracketed by
- // all higher levels. It is _not_ required that prev_[i]->Next(i) ==
- // next_[i] (it probably did at some point in the past, but intervening
- // or concurrent operations might have inserted nodes in between).
- int height_ = 0;
- Node** prev_;
- Node** next_;
- };
- // The Node data type is more of a pointer into custom-managed memory than
- // a traditional C++ struct. The key is stored in the bytes immediately
- // after the struct, and the next_ pointers for nodes with height > 1 are
- // stored immediately _before_ the struct. This avoids the need to include
- // any pointer or sizing data, which reduces per-node memory overheads.
- template <class Comparator>
- struct InlineSkipList<Comparator>::Node {
- // Stores the height of the node in the memory location normally used for
- // next_[0]. This is used for passing data from AllocateKey to Insert.
- void StashHeight(const int height) {
- assert(sizeof(int) <= sizeof(next_[0]));
- memcpy(static_cast<void*>(&next_[0]), &height, sizeof(int));
- }
- // Retrieves the value passed to StashHeight. Undefined after a call
- // to SetNext or NoBarrier_SetNext.
- int UnstashHeight() const {
- int rv;
- memcpy(&rv, &next_[0], sizeof(int));
- return rv;
- }
- const char* Key() const { return reinterpret_cast<const char*>(&next_[1]); }
- // Accessors/mutators for links. Wrapped in methods so we can add
- // the appropriate barriers as necessary, and perform the necessary
- // addressing trickery for storing links below the Node in memory.
- Node* Next(int n) {
- assert(n >= 0);
- // Use an 'acquire load' so that we observe a fully initialized
- // version of the returned Node.
- return ((&next_[0] - n)->load(std::memory_order_acquire));
- }
- void SetNext(int n, Node* x) {
- assert(n >= 0);
- // Use a 'release store' so that anybody who reads through this
- // pointer observes a fully initialized version of the inserted node.
- (&next_[0] - n)->store(x, std::memory_order_release);
- }
- bool CASNext(int n, Node* expected, Node* x) {
- assert(n >= 0);
- return (&next_[0] - n)->compare_exchange_strong(expected, x);
- }
- // No-barrier variants that can be safely used in a few locations.
- Node* NoBarrier_Next(int n) {
- assert(n >= 0);
- return (&next_[0] - n)->load(std::memory_order_relaxed);
- }
- void NoBarrier_SetNext(int n, Node* x) {
- assert(n >= 0);
- (&next_[0] - n)->store(x, std::memory_order_relaxed);
- }
- // Insert node after prev on specific level.
- void InsertAfter(Node* prev, int level) {
- // NoBarrier_SetNext() suffices since we will add a barrier when
- // we publish a pointer to "this" in prev.
- NoBarrier_SetNext(level, prev->NoBarrier_Next(level));
- prev->SetNext(level, this);
- }
- private:
- // next_[0] is the lowest level link (level 0). Higher levels are
- // stored _earlier_, so level 1 is at next_[-1].
- std::atomic<Node*> next_[1];
- };
- template <class Comparator>
- inline InlineSkipList<Comparator>::Iterator::Iterator(
- const InlineSkipList* list) {
- SetList(list);
- }
- template <class Comparator>
- inline void InlineSkipList<Comparator>::Iterator::SetList(
- const InlineSkipList* list) {
- list_ = list;
- node_ = nullptr;
- }
- template <class Comparator>
- inline bool InlineSkipList<Comparator>::Iterator::Valid() const {
- return node_ != nullptr;
- }
- template <class Comparator>
- inline const char* InlineSkipList<Comparator>::Iterator::key() const {
- assert(Valid());
- return node_->Key();
- }
- template <class Comparator>
- inline void InlineSkipList<Comparator>::Iterator::Next() {
- assert(Valid());
- node_ = node_->Next(0);
- }
- template <class Comparator>
- inline void InlineSkipList<Comparator>::Iterator::Prev() {
- // Instead of using explicit "prev" links, we just search for the
- // last node that falls before key.
- assert(Valid());
- node_ = list_->FindLessThan(node_->Key());
- if (node_ == list_->head_) {
- node_ = nullptr;
- }
- }
- template <class Comparator>
- inline void InlineSkipList<Comparator>::Iterator::Seek(const char* target) {
- node_ = list_->FindGreaterOrEqual(target);
- }
- template <class Comparator>
- inline void InlineSkipList<Comparator>::Iterator::SeekForPrev(
- const char* target) {
- Seek(target);
- if (!Valid()) {
- SeekToLast();
- }
- while (Valid() && list_->LessThan(target, key())) {
- Prev();
- }
- }
- template <class Comparator>
- inline void InlineSkipList<Comparator>::Iterator::SeekToFirst() {
- node_ = list_->head_->Next(0);
- }
- template <class Comparator>
- inline void InlineSkipList<Comparator>::Iterator::SeekToLast() {
- node_ = list_->FindLast();
- if (node_ == list_->head_) {
- node_ = nullptr;
- }
- }
- template <class Comparator>
- int InlineSkipList<Comparator>::RandomHeight() {
- auto rnd = Random::GetTLSInstance();
- // Increase height with probability 1 in kBranching
- int height = 1;
- while (height < kMaxHeight_ && height < kMaxPossibleHeight &&
- rnd->Next() < kScaledInverseBranching_) {
- height++;
- }
- assert(height > 0);
- assert(height <= kMaxHeight_);
- assert(height <= kMaxPossibleHeight);
- return height;
- }
- template <class Comparator>
- bool InlineSkipList<Comparator>::KeyIsAfterNode(const char* key,
- Node* n) const {
- // nullptr n is considered infinite
- assert(n != head_);
- return (n != nullptr) && (compare_(n->Key(), key) < 0);
- }
- template <class Comparator>
- bool InlineSkipList<Comparator>::KeyIsAfterNode(const DecodedKey& key,
- Node* n) const {
- // nullptr n is considered infinite
- assert(n != head_);
- return (n != nullptr) && (compare_(n->Key(), key) < 0);
- }
- template <class Comparator>
- typename InlineSkipList<Comparator>::Node*
- InlineSkipList<Comparator>::FindGreaterOrEqual(const char* key) const {
- // Note: It looks like we could reduce duplication by implementing
- // this function as FindLessThan(key)->Next(0), but we wouldn't be able
- // to exit early on equality and the result wouldn't even be correct.
- // A concurrent insert might occur after FindLessThan(key) but before
- // we get a chance to call Next(0).
- Node* x = head_;
- int level = GetMaxHeight() - 1;
- Node* last_bigger = nullptr;
- const DecodedKey key_decoded = compare_.decode_key(key);
- while (true) {
- Node* next = x->Next(level);
- if (next != nullptr) {
- PREFETCH(next->Next(level), 0, 1);
- }
- // Make sure the lists are sorted
- assert(x == head_ || next == nullptr || KeyIsAfterNode(next->Key(), x));
- // Make sure we haven't overshot during our search
- assert(x == head_ || KeyIsAfterNode(key_decoded, x));
- int cmp = (next == nullptr || next == last_bigger)
- ? 1
- : compare_(next->Key(), key_decoded);
- if (cmp == 0 || (cmp > 0 && level == 0)) {
- return next;
- } else if (cmp < 0) {
- // Keep searching in this list
- x = next;
- } else {
- // Switch to next list, reuse compare_() result
- last_bigger = next;
- level--;
- }
- }
- }
- template <class Comparator>
- typename InlineSkipList<Comparator>::Node*
- InlineSkipList<Comparator>::FindLessThan(const char* key, Node** prev) const {
- return FindLessThan(key, prev, head_, GetMaxHeight(), 0);
- }
- template <class Comparator>
- typename InlineSkipList<Comparator>::Node*
- InlineSkipList<Comparator>::FindLessThan(const char* key, Node** prev,
- Node* root, int top_level,
- int bottom_level) const {
- assert(top_level > bottom_level);
- int level = top_level - 1;
- Node* x = root;
- // KeyIsAfter(key, last_not_after) is definitely false
- Node* last_not_after = nullptr;
- const DecodedKey key_decoded = compare_.decode_key(key);
- while (true) {
- assert(x != nullptr);
- Node* next = x->Next(level);
- if (next != nullptr) {
- PREFETCH(next->Next(level), 0, 1);
- }
- assert(x == head_ || next == nullptr || KeyIsAfterNode(next->Key(), x));
- assert(x == head_ || KeyIsAfterNode(key_decoded, x));
- if (next != last_not_after && KeyIsAfterNode(key_decoded, next)) {
- // Keep searching in this list
- assert(next != nullptr);
- x = next;
- } else {
- if (prev != nullptr) {
- prev[level] = x;
- }
- if (level == bottom_level) {
- return x;
- } else {
- // Switch to next list, reuse KeyIsAfterNode() result
- last_not_after = next;
- level--;
- }
- }
- }
- }
- template <class Comparator>
- typename InlineSkipList<Comparator>::Node*
- InlineSkipList<Comparator>::FindLast() const {
- Node* x = head_;
- int level = GetMaxHeight() - 1;
- while (true) {
- Node* next = x->Next(level);
- if (next == nullptr) {
- if (level == 0) {
- return x;
- } else {
- // Switch to next list
- level--;
- }
- } else {
- x = next;
- }
- }
- }
- template <class Comparator>
- uint64_t InlineSkipList<Comparator>::EstimateCount(const char* key) const {
- uint64_t count = 0;
- Node* x = head_;
- int level = GetMaxHeight() - 1;
- const DecodedKey key_decoded = compare_.decode_key(key);
- while (true) {
- assert(x == head_ || compare_(x->Key(), key_decoded) < 0);
- Node* next = x->Next(level);
- if (next != nullptr) {
- PREFETCH(next->Next(level), 0, 1);
- }
- if (next == nullptr || compare_(next->Key(), key_decoded) >= 0) {
- if (level == 0) {
- return count;
- } else {
- // Switch to next list
- count *= kBranching_;
- level--;
- }
- } else {
- x = next;
- count++;
- }
- }
- }
- template <class Comparator>
- InlineSkipList<Comparator>::InlineSkipList(const Comparator cmp,
- Allocator* allocator,
- int32_t max_height,
- int32_t branching_factor)
- : kMaxHeight_(static_cast<uint16_t>(max_height)),
- kBranching_(static_cast<uint16_t>(branching_factor)),
- kScaledInverseBranching_((Random::kMaxNext + 1) / kBranching_),
- allocator_(allocator),
- compare_(cmp),
- head_(AllocateNode(0, max_height)),
- max_height_(1),
- seq_splice_(AllocateSplice()) {
- assert(max_height > 0 && kMaxHeight_ == static_cast<uint32_t>(max_height));
- assert(branching_factor > 1 &&
- kBranching_ == static_cast<uint32_t>(branching_factor));
- assert(kScaledInverseBranching_ > 0);
- for (int i = 0; i < kMaxHeight_; ++i) {
- head_->SetNext(i, nullptr);
- }
- }
- template <class Comparator>
- char* InlineSkipList<Comparator>::AllocateKey(size_t key_size) {
- return const_cast<char*>(AllocateNode(key_size, RandomHeight())->Key());
- }
- template <class Comparator>
- typename InlineSkipList<Comparator>::Node*
- InlineSkipList<Comparator>::AllocateNode(size_t key_size, int height) {
- auto prefix = sizeof(std::atomic<Node*>) * (height - 1);
- // prefix is space for the height - 1 pointers that we store before
- // the Node instance (next_[-(height - 1) .. -1]). Node starts at
- // raw + prefix, and holds the bottom-mode (level 0) skip list pointer
- // next_[0]. key_size is the bytes for the key, which comes just after
- // the Node.
- char* raw = allocator_->AllocateAligned(prefix + sizeof(Node) + key_size);
- Node* x = reinterpret_cast<Node*>(raw + prefix);
- // Once we've linked the node into the skip list we don't actually need
- // to know its height, because we can implicitly use the fact that we
- // traversed into a node at level h to known that h is a valid level
- // for that node. We need to convey the height to the Insert step,
- // however, so that it can perform the proper links. Since we're not
- // using the pointers at the moment, StashHeight temporarily borrow
- // storage from next_[0] for that purpose.
- x->StashHeight(height);
- return x;
- }
- template <class Comparator>
- typename InlineSkipList<Comparator>::Splice*
- InlineSkipList<Comparator>::AllocateSplice() {
- // size of prev_ and next_
- size_t array_size = sizeof(Node*) * (kMaxHeight_ + 1);
- char* raw = allocator_->AllocateAligned(sizeof(Splice) + array_size * 2);
- Splice* splice = reinterpret_cast<Splice*>(raw);
- splice->height_ = 0;
- splice->prev_ = reinterpret_cast<Node**>(raw + sizeof(Splice));
- splice->next_ = reinterpret_cast<Node**>(raw + sizeof(Splice) + array_size);
- return splice;
- }
- template <class Comparator>
- typename InlineSkipList<Comparator>::Splice*
- InlineSkipList<Comparator>::AllocateSpliceOnHeap() {
- size_t array_size = sizeof(Node*) * (kMaxHeight_ + 1);
- char* raw = new char[sizeof(Splice) + array_size * 2];
- Splice* splice = reinterpret_cast<Splice*>(raw);
- splice->height_ = 0;
- splice->prev_ = reinterpret_cast<Node**>(raw + sizeof(Splice));
- splice->next_ = reinterpret_cast<Node**>(raw + sizeof(Splice) + array_size);
- return splice;
- }
- template <class Comparator>
- bool InlineSkipList<Comparator>::Insert(const char* key) {
- return Insert<false>(key, seq_splice_, false);
- }
- template <class Comparator>
- bool InlineSkipList<Comparator>::InsertConcurrently(const char* key) {
- Node* prev[kMaxPossibleHeight];
- Node* next[kMaxPossibleHeight];
- Splice splice;
- splice.prev_ = prev;
- splice.next_ = next;
- return Insert<true>(key, &splice, false);
- }
- template <class Comparator>
- bool InlineSkipList<Comparator>::InsertWithHint(const char* key, void** hint) {
- assert(hint != nullptr);
- Splice* splice = reinterpret_cast<Splice*>(*hint);
- if (splice == nullptr) {
- splice = AllocateSplice();
- *hint = reinterpret_cast<void*>(splice);
- }
- return Insert<false>(key, splice, true);
- }
- template <class Comparator>
- bool InlineSkipList<Comparator>::InsertWithHintConcurrently(const char* key,
- void** hint) {
- assert(hint != nullptr);
- Splice* splice = reinterpret_cast<Splice*>(*hint);
- if (splice == nullptr) {
- splice = AllocateSpliceOnHeap();
- *hint = reinterpret_cast<void*>(splice);
- }
- return Insert<true>(key, splice, true);
- }
- template <class Comparator>
- template <bool prefetch_before>
- void InlineSkipList<Comparator>::FindSpliceForLevel(const DecodedKey& key,
- Node* before, Node* after,
- int level, Node** out_prev,
- Node** out_next) {
- while (true) {
- Node* next = before->Next(level);
- if (next != nullptr) {
- PREFETCH(next->Next(level), 0, 1);
- }
- if (prefetch_before == true) {
- if (next != nullptr && level>0) {
- PREFETCH(next->Next(level-1), 0, 1);
- }
- }
- assert(before == head_ || next == nullptr ||
- KeyIsAfterNode(next->Key(), before));
- assert(before == head_ || KeyIsAfterNode(key, before));
- if (next == after || !KeyIsAfterNode(key, next)) {
- // found it
- *out_prev = before;
- *out_next = next;
- return;
- }
- before = next;
- }
- }
- template <class Comparator>
- void InlineSkipList<Comparator>::RecomputeSpliceLevels(const DecodedKey& key,
- Splice* splice,
- int recompute_level) {
- assert(recompute_level > 0);
- assert(recompute_level <= splice->height_);
- for (int i = recompute_level - 1; i >= 0; --i) {
- FindSpliceForLevel<true>(key, splice->prev_[i + 1], splice->next_[i + 1], i,
- &splice->prev_[i], &splice->next_[i]);
- }
- }
- template <class Comparator>
- template <bool UseCAS>
- bool InlineSkipList<Comparator>::Insert(const char* key, Splice* splice,
- bool allow_partial_splice_fix) {
- Node* x = reinterpret_cast<Node*>(const_cast<char*>(key)) - 1;
- const DecodedKey key_decoded = compare_.decode_key(key);
- int height = x->UnstashHeight();
- assert(height >= 1 && height <= kMaxHeight_);
- int max_height = max_height_.load(std::memory_order_relaxed);
- while (height > max_height) {
- if (max_height_.compare_exchange_weak(max_height, height)) {
- // successfully updated it
- max_height = height;
- break;
- }
- // else retry, possibly exiting the loop because somebody else
- // increased it
- }
- assert(max_height <= kMaxPossibleHeight);
- int recompute_height = 0;
- if (splice->height_ < max_height) {
- // Either splice has never been used or max_height has grown since
- // last use. We could potentially fix it in the latter case, but
- // that is tricky.
- splice->prev_[max_height] = head_;
- splice->next_[max_height] = nullptr;
- splice->height_ = max_height;
- recompute_height = max_height;
- } else {
- // Splice is a valid proper-height splice that brackets some
- // key, but does it bracket this one? We need to validate it and
- // recompute a portion of the splice (levels 0..recompute_height-1)
- // that is a superset of all levels that don't bracket the new key.
- // Several choices are reasonable, because we have to balance the work
- // saved against the extra comparisons required to validate the Splice.
- //
- // One strategy is just to recompute all of orig_splice_height if the
- // bottom level isn't bracketing. This pessimistically assumes that
- // we will either get a perfect Splice hit (increasing sequential
- // inserts) or have no locality.
- //
- // Another strategy is to walk up the Splice's levels until we find
- // a level that brackets the key. This strategy lets the Splice
- // hint help for other cases: it turns insertion from O(log N) into
- // O(log D), where D is the number of nodes in between the key that
- // produced the Splice and the current insert (insertion is aided
- // whether the new key is before or after the splice). If you have
- // a way of using a prefix of the key to map directly to the closest
- // Splice out of O(sqrt(N)) Splices and we make it so that splices
- // can also be used as hints during read, then we end up with Oshman's
- // and Shavit's SkipTrie, which has O(log log N) lookup and insertion
- // (compare to O(log N) for skip list).
- //
- // We control the pessimistic strategy with allow_partial_splice_fix.
- // A good strategy is probably to be pessimistic for seq_splice_,
- // optimistic if the caller actually went to the work of providing
- // a Splice.
- while (recompute_height < max_height) {
- if (splice->prev_[recompute_height]->Next(recompute_height) !=
- splice->next_[recompute_height]) {
- // splice isn't tight at this level, there must have been some inserts
- // to this
- // location that didn't update the splice. We might only be a little
- // stale, but if
- // the splice is very stale it would be O(N) to fix it. We haven't used
- // up any of
- // our budget of comparisons, so always move up even if we are
- // pessimistic about
- // our chances of success.
- ++recompute_height;
- } else if (splice->prev_[recompute_height] != head_ &&
- !KeyIsAfterNode(key_decoded,
- splice->prev_[recompute_height])) {
- // key is from before splice
- if (allow_partial_splice_fix) {
- // skip all levels with the same node without more comparisons
- Node* bad = splice->prev_[recompute_height];
- while (splice->prev_[recompute_height] == bad) {
- ++recompute_height;
- }
- } else {
- // we're pessimistic, recompute everything
- recompute_height = max_height;
- }
- } else if (KeyIsAfterNode(key_decoded,
- splice->next_[recompute_height])) {
- // key is from after splice
- if (allow_partial_splice_fix) {
- Node* bad = splice->next_[recompute_height];
- while (splice->next_[recompute_height] == bad) {
- ++recompute_height;
- }
- } else {
- recompute_height = max_height;
- }
- } else {
- // this level brackets the key, we won!
- break;
- }
- }
- }
- assert(recompute_height <= max_height);
- if (recompute_height > 0) {
- RecomputeSpliceLevels(key_decoded, splice, recompute_height);
- }
- bool splice_is_valid = true;
- if (UseCAS) {
- for (int i = 0; i < height; ++i) {
- while (true) {
- // Checking for duplicate keys on the level 0 is sufficient
- if (UNLIKELY(i == 0 && splice->next_[i] != nullptr &&
- compare_(x->Key(), splice->next_[i]->Key()) >= 0)) {
- // duplicate key
- return false;
- }
- if (UNLIKELY(i == 0 && splice->prev_[i] != head_ &&
- compare_(splice->prev_[i]->Key(), x->Key()) >= 0)) {
- // duplicate key
- return false;
- }
- assert(splice->next_[i] == nullptr ||
- compare_(x->Key(), splice->next_[i]->Key()) < 0);
- assert(splice->prev_[i] == head_ ||
- compare_(splice->prev_[i]->Key(), x->Key()) < 0);
- x->NoBarrier_SetNext(i, splice->next_[i]);
- if (splice->prev_[i]->CASNext(i, splice->next_[i], x)) {
- // success
- break;
- }
- // CAS failed, we need to recompute prev and next. It is unlikely
- // to be helpful to try to use a different level as we redo the
- // search, because it should be unlikely that lots of nodes have
- // been inserted between prev[i] and next[i]. No point in using
- // next[i] as the after hint, because we know it is stale.
- FindSpliceForLevel<false>(key_decoded, splice->prev_[i], nullptr, i,
- &splice->prev_[i], &splice->next_[i]);
- // Since we've narrowed the bracket for level i, we might have
- // violated the Splice constraint between i and i-1. Make sure
- // we recompute the whole thing next time.
- if (i > 0) {
- splice_is_valid = false;
- }
- }
- }
- } else {
- for (int i = 0; i < height; ++i) {
- if (i >= recompute_height &&
- splice->prev_[i]->Next(i) != splice->next_[i]) {
- FindSpliceForLevel<false>(key_decoded, splice->prev_[i], nullptr, i,
- &splice->prev_[i], &splice->next_[i]);
- }
- // Checking for duplicate keys on the level 0 is sufficient
- if (UNLIKELY(i == 0 && splice->next_[i] != nullptr &&
- compare_(x->Key(), splice->next_[i]->Key()) >= 0)) {
- // duplicate key
- return false;
- }
- if (UNLIKELY(i == 0 && splice->prev_[i] != head_ &&
- compare_(splice->prev_[i]->Key(), x->Key()) >= 0)) {
- // duplicate key
- return false;
- }
- assert(splice->next_[i] == nullptr ||
- compare_(x->Key(), splice->next_[i]->Key()) < 0);
- assert(splice->prev_[i] == head_ ||
- compare_(splice->prev_[i]->Key(), x->Key()) < 0);
- assert(splice->prev_[i]->Next(i) == splice->next_[i]);
- x->NoBarrier_SetNext(i, splice->next_[i]);
- splice->prev_[i]->SetNext(i, x);
- }
- }
- if (splice_is_valid) {
- for (int i = 0; i < height; ++i) {
- splice->prev_[i] = x;
- }
- assert(splice->prev_[splice->height_] == head_);
- assert(splice->next_[splice->height_] == nullptr);
- for (int i = 0; i < splice->height_; ++i) {
- assert(splice->next_[i] == nullptr ||
- compare_(key, splice->next_[i]->Key()) < 0);
- assert(splice->prev_[i] == head_ ||
- compare_(splice->prev_[i]->Key(), key) <= 0);
- assert(splice->prev_[i + 1] == splice->prev_[i] ||
- splice->prev_[i + 1] == head_ ||
- compare_(splice->prev_[i + 1]->Key(), splice->prev_[i]->Key()) <
- 0);
- assert(splice->next_[i + 1] == splice->next_[i] ||
- splice->next_[i + 1] == nullptr ||
- compare_(splice->next_[i]->Key(), splice->next_[i + 1]->Key()) <
- 0);
- }
- } else {
- splice->height_ = 0;
- }
- return true;
- }
- template <class Comparator>
- bool InlineSkipList<Comparator>::Contains(const char* key) const {
- Node* x = FindGreaterOrEqual(key);
- if (x != nullptr && Equal(key, x->Key())) {
- return true;
- } else {
- return false;
- }
- }
- template <class Comparator>
- void InlineSkipList<Comparator>::TEST_Validate() const {
- // Interate over all levels at the same time, and verify nodes appear in
- // the right order, and nodes appear in upper level also appear in lower
- // levels.
- Node* nodes[kMaxPossibleHeight];
- int max_height = GetMaxHeight();
- assert(max_height > 0);
- for (int i = 0; i < max_height; i++) {
- nodes[i] = head_;
- }
- while (nodes[0] != nullptr) {
- Node* l0_next = nodes[0]->Next(0);
- if (l0_next == nullptr) {
- break;
- }
- assert(nodes[0] == head_ || compare_(nodes[0]->Key(), l0_next->Key()) < 0);
- nodes[0] = l0_next;
- int i = 1;
- while (i < max_height) {
- Node* next = nodes[i]->Next(i);
- if (next == nullptr) {
- break;
- }
- auto cmp = compare_(nodes[0]->Key(), next->Key());
- assert(cmp <= 0);
- if (cmp == 0) {
- assert(next == nodes[0]);
- nodes[i] = next;
- } else {
- break;
- }
- i++;
- }
- }
- for (int i = 1; i < max_height; i++) {
- assert(nodes[i] != nullptr && nodes[i]->Next(i) == nullptr);
- }
- }
- } // namespace ROCKSDB_NAMESPACE
|