| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201 |
- // Copyright (c) 2011-present, Facebook, Inc. All rights reserved.
- // This source code is licensed under both the GPLv2 (found in the
- // COPYING file in the root directory) and Apache 2.0 License
- // (found in the LICENSE.Apache file in the root directory).
- //
- // Copyright (c) 2011 The LevelDB Authors. All rights reserved.
- // Use of this source code is governed by a BSD-style license that can be
- // found in the LICENSE file. See the AUTHORS file for names of contributors.
- #include "util/hash.h"
- #include <string>
- #include "port/lang.h"
- #include "util/coding.h"
- #include "util/hash128.h"
- #include "util/math128.h"
- #include "util/xxhash.h"
- #include "util/xxph3.h"
- namespace ROCKSDB_NAMESPACE {
- uint64_t (*kGetSliceNPHash64UnseededFnPtr)(const Slice&) = &GetSliceHash64;
- uint32_t Hash(const char* data, size_t n, uint32_t seed) {
- // MurmurHash1 - fast but mediocre quality
- // https://github.com/aappleby/smhasher/wiki/MurmurHash1
- //
- const uint32_t m = 0xc6a4a793;
- const uint32_t r = 24;
- const char* limit = data + n;
- uint32_t h = static_cast<uint32_t>(seed ^ (n * m));
- // Pick up four bytes at a time
- while (data + 4 <= limit) {
- uint32_t w = DecodeFixed32(data);
- data += 4;
- h += w;
- h *= m;
- h ^= (h >> 16);
- }
- // Pick up remaining bytes
- switch (limit - data) {
- // Note: The original hash implementation used data[i] << shift, which
- // promotes the char to int and then performs the shift. If the char is
- // negative, the shift is undefined behavior in C++. The hash algorithm is
- // part of the format definition, so we cannot change it; to obtain the same
- // behavior in a legal way we just cast to uint32_t, which will do
- // sign-extension. To guarantee compatibility with architectures where chars
- // are unsigned we first cast the char to int8_t.
- case 3:
- h += static_cast<uint32_t>(static_cast<int8_t>(data[2])) << 16;
- FALLTHROUGH_INTENDED;
- case 2:
- h += static_cast<uint32_t>(static_cast<int8_t>(data[1])) << 8;
- FALLTHROUGH_INTENDED;
- case 1:
- h += static_cast<uint32_t>(static_cast<int8_t>(data[0]));
- h *= m;
- h ^= (h >> r);
- break;
- }
- return h;
- }
- // We are standardizing on a preview release of XXH3, because that's
- // the best available at time of standardizing.
- //
- // In testing (mostly Intel Skylake), this hash function is much more
- // thorough than Hash32 and is almost universally faster. Hash() only
- // seems faster when passing runtime-sized keys of the same small size
- // (less than about 24 bytes) thousands of times in a row; this seems
- // to allow the branch predictor to work some magic. XXH3's speed is
- // much less dependent on branch prediction.
- //
- // Hashing with a prefix extractor is potentially a common case of
- // hashing objects of small, predictable size. We could consider
- // bundling hash functions specialized for particular lengths with
- // the prefix extractors.
- uint64_t Hash64(const char* data, size_t n, uint64_t seed) {
- return XXPH3_64bits_withSeed(data, n, seed);
- }
- uint64_t Hash64(const char* data, size_t n) {
- // Same as seed = 0
- return XXPH3_64bits(data, n);
- }
- uint64_t GetSlicePartsNPHash64(const SliceParts& data, uint64_t seed) {
- // TODO(ajkr): use XXH3 streaming APIs to avoid the copy/allocation.
- size_t concat_len = 0;
- for (int i = 0; i < data.num_parts; ++i) {
- concat_len += data.parts[i].size();
- }
- std::string concat_data;
- concat_data.reserve(concat_len);
- for (int i = 0; i < data.num_parts; ++i) {
- concat_data.append(data.parts[i].data(), data.parts[i].size());
- }
- assert(concat_data.size() == concat_len);
- return NPHash64(concat_data.data(), concat_len, seed);
- }
- Unsigned128 Hash128(const char* data, size_t n, uint64_t seed) {
- auto h = XXH3_128bits_withSeed(data, n, seed);
- return (Unsigned128{h.high64} << 64) | (h.low64);
- }
- Unsigned128 Hash128(const char* data, size_t n) {
- // Same as seed = 0
- auto h = XXH3_128bits(data, n);
- return (Unsigned128{h.high64} << 64) | (h.low64);
- }
- void Hash2x64(const char* data, size_t n, uint64_t* high64, uint64_t* low64) {
- // Same as seed = 0
- auto h = XXH3_128bits(data, n);
- *high64 = h.high64;
- *low64 = h.low64;
- }
- void Hash2x64(const char* data, size_t n, uint64_t seed, uint64_t* high64,
- uint64_t* low64) {
- auto h = XXH3_128bits_withSeed(data, n, seed);
- *high64 = h.high64;
- *low64 = h.low64;
- }
- namespace {
- inline uint64_t XXH3_avalanche(uint64_t h64) {
- h64 ^= h64 >> 37;
- h64 *= 0x165667919E3779F9U;
- h64 ^= h64 >> 32;
- return h64;
- }
- inline uint64_t XXH3_unavalanche(uint64_t h64) {
- h64 ^= h64 >> 32;
- h64 *= 0x8da8ee41d6df849U; // inverse of 0x165667919E3779F9U
- h64 ^= h64 >> 37;
- return h64;
- }
- } // namespace
- void BijectiveHash2x64(uint64_t in_high64, uint64_t in_low64, uint64_t seed,
- uint64_t* out_high64, uint64_t* out_low64) {
- // Adapted from XXH3_len_9to16_128b
- const uint64_t bitflipl = /*secret part*/ 0x59973f0033362349U - seed;
- const uint64_t bitfliph = /*secret part*/ 0xc202797692d63d58U + seed;
- Unsigned128 tmp128 =
- Multiply64to128(in_low64 ^ in_high64 ^ bitflipl, 0x9E3779B185EBCA87U);
- uint64_t lo = Lower64of128(tmp128);
- uint64_t hi = Upper64of128(tmp128);
- lo += 0x3c0000000000000U; // (len - 1) << 54
- in_high64 ^= bitfliph;
- hi += in_high64 + (Lower32of64(in_high64) * uint64_t{0x85EBCA76});
- lo ^= EndianSwapValue(hi);
- tmp128 = Multiply64to128(lo, 0xC2B2AE3D27D4EB4FU);
- lo = Lower64of128(tmp128);
- hi = Upper64of128(tmp128) + (hi * 0xC2B2AE3D27D4EB4FU);
- *out_low64 = XXH3_avalanche(lo);
- *out_high64 = XXH3_avalanche(hi);
- }
- void BijectiveUnhash2x64(uint64_t in_high64, uint64_t in_low64, uint64_t seed,
- uint64_t* out_high64, uint64_t* out_low64) {
- // Inverted above (also consulting XXH3_len_9to16_128b)
- const uint64_t bitflipl = /*secret part*/ 0x59973f0033362349U - seed;
- const uint64_t bitfliph = /*secret part*/ 0xc202797692d63d58U + seed;
- uint64_t lo = XXH3_unavalanche(in_low64);
- uint64_t hi = XXH3_unavalanche(in_high64);
- lo *= 0xba79078168d4baf; // inverse of 0xC2B2AE3D27D4EB4FU
- hi -= Upper64of128(Multiply64to128(lo, 0xC2B2AE3D27D4EB4FU));
- hi *= 0xba79078168d4baf; // inverse of 0xC2B2AE3D27D4EB4FU
- lo ^= EndianSwapValue(hi);
- lo -= 0x3c0000000000000U;
- lo *= 0x887493432badb37U; // inverse of 0x9E3779B185EBCA87U
- hi -= Upper64of128(Multiply64to128(lo, 0x9E3779B185EBCA87U));
- uint32_t tmp32 = Lower32of64(hi) * 0xb6c92f47; // inverse of 0x85EBCA77
- hi -= tmp32;
- hi = (hi & 0xFFFFFFFF00000000U) -
- ((tmp32 * uint64_t{0x85EBCA76}) & 0xFFFFFFFF00000000U) + tmp32;
- hi ^= bitfliph;
- lo ^= hi ^ bitflipl;
- *out_high64 = hi;
- *out_low64 = lo;
- }
- void BijectiveHash2x64(uint64_t in_high64, uint64_t in_low64,
- uint64_t* out_high64, uint64_t* out_low64) {
- BijectiveHash2x64(in_high64, in_low64, /*seed*/ 0, out_high64, out_low64);
- }
- void BijectiveUnhash2x64(uint64_t in_high64, uint64_t in_low64,
- uint64_t* out_high64, uint64_t* out_low64) {
- BijectiveUnhash2x64(in_high64, in_low64, /*seed*/ 0, out_high64, out_low64);
- }
- } // namespace ROCKSDB_NAMESPACE
|