| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777 |
- // Copyright (c) 2011-present, Facebook, Inc. All rights reserved.
- // This source code is licensed under both the GPLv2 (found in the
- // COPYING file in the root directory) and Apache 2.0 License
- // (found in the LICENSE.Apache file in the root directory).
- #include "db/write_thread.h"
- #include <chrono>
- #include <thread>
- #include "db/column_family.h"
- #include "monitoring/perf_context_imp.h"
- #include "port/port.h"
- #include "test_util/sync_point.h"
- #include "util/random.h"
- namespace ROCKSDB_NAMESPACE {
- WriteThread::WriteThread(const ImmutableDBOptions& db_options)
- : max_yield_usec_(db_options.enable_write_thread_adaptive_yield
- ? db_options.write_thread_max_yield_usec
- : 0),
- slow_yield_usec_(db_options.write_thread_slow_yield_usec),
- allow_concurrent_memtable_write_(
- db_options.allow_concurrent_memtable_write),
- enable_pipelined_write_(db_options.enable_pipelined_write),
- max_write_batch_group_size_bytes(
- db_options.max_write_batch_group_size_bytes),
- newest_writer_(nullptr),
- newest_memtable_writer_(nullptr),
- last_sequence_(0),
- write_stall_dummy_(),
- stall_mu_(),
- stall_cv_(&stall_mu_) {}
- uint8_t WriteThread::BlockingAwaitState(Writer* w, uint8_t goal_mask) {
- // We're going to block. Lazily create the mutex. We guarantee
- // propagation of this construction to the waker via the
- // STATE_LOCKED_WAITING state. The waker won't try to touch the mutex
- // or the condvar unless they CAS away the STATE_LOCKED_WAITING that
- // we install below.
- w->CreateMutex();
- auto state = w->state.load(std::memory_order_acquire);
- assert(state != STATE_LOCKED_WAITING);
- if ((state & goal_mask) == 0 &&
- w->state.compare_exchange_strong(state, STATE_LOCKED_WAITING)) {
- // we have permission (and an obligation) to use StateMutex
- std::unique_lock<std::mutex> guard(w->StateMutex());
- w->StateCV().wait(guard, [w] {
- return w->state.load(std::memory_order_relaxed) != STATE_LOCKED_WAITING;
- });
- state = w->state.load(std::memory_order_relaxed);
- }
- // else tricky. Goal is met or CAS failed. In the latter case the waker
- // must have changed the state, and compare_exchange_strong has updated
- // our local variable with the new one. At the moment WriteThread never
- // waits for a transition across intermediate states, so we know that
- // since a state change has occurred the goal must have been met.
- assert((state & goal_mask) != 0);
- return state;
- }
- uint8_t WriteThread::AwaitState(Writer* w, uint8_t goal_mask,
- AdaptationContext* ctx) {
- uint8_t state = 0;
- // 1. Busy loop using "pause" for 1 micro sec
- // 2. Else SOMETIMES busy loop using "yield" for 100 micro sec (default)
- // 3. Else blocking wait
- // On a modern Xeon each loop takes about 7 nanoseconds (most of which
- // is the effect of the pause instruction), so 200 iterations is a bit
- // more than a microsecond. This is long enough that waits longer than
- // this can amortize the cost of accessing the clock and yielding.
- for (uint32_t tries = 0; tries < 200; ++tries) {
- state = w->state.load(std::memory_order_acquire);
- if ((state & goal_mask) != 0) {
- return state;
- }
- port::AsmVolatilePause();
- }
- // This is below the fast path, so that the stat is zero when all writes are
- // from the same thread.
- PERF_TIMER_GUARD(write_thread_wait_nanos);
- // If we're only going to end up waiting a short period of time,
- // it can be a lot more efficient to call std::this_thread::yield()
- // in a loop than to block in StateMutex(). For reference, on my 4.0
- // SELinux test server with support for syscall auditing enabled, the
- // minimum latency between FUTEX_WAKE to returning from FUTEX_WAIT is
- // 2.7 usec, and the average is more like 10 usec. That can be a big
- // drag on RockDB's single-writer design. Of course, spinning is a
- // bad idea if other threads are waiting to run or if we're going to
- // wait for a long time. How do we decide?
- //
- // We break waiting into 3 categories: short-uncontended,
- // short-contended, and long. If we had an oracle, then we would always
- // spin for short-uncontended, always block for long, and our choice for
- // short-contended might depend on whether we were trying to optimize
- // RocksDB throughput or avoid being greedy with system resources.
- //
- // Bucketing into short or long is easy by measuring elapsed time.
- // Differentiating short-uncontended from short-contended is a bit
- // trickier, but not too bad. We could look for involuntary context
- // switches using getrusage(RUSAGE_THREAD, ..), but it's less work
- // (portability code and CPU) to just look for yield calls that take
- // longer than we expect. sched_yield() doesn't actually result in any
- // context switch overhead if there are no other runnable processes
- // on the current core, in which case it usually takes less than
- // a microsecond.
- //
- // There are two primary tunables here: the threshold between "short"
- // and "long" waits, and the threshold at which we suspect that a yield
- // is slow enough to indicate we should probably block. If these
- // thresholds are chosen well then CPU-bound workloads that don't
- // have more threads than cores will experience few context switches
- // (voluntary or involuntary), and the total number of context switches
- // (voluntary and involuntary) will not be dramatically larger (maybe
- // 2x) than the number of voluntary context switches that occur when
- // --max_yield_wait_micros=0.
- //
- // There's another constant, which is the number of slow yields we will
- // tolerate before reversing our previous decision. Solitary slow
- // yields are pretty common (low-priority small jobs ready to run),
- // so this should be at least 2. We set this conservatively to 3 so
- // that we can also immediately schedule a ctx adaptation, rather than
- // waiting for the next update_ctx.
- const size_t kMaxSlowYieldsWhileSpinning = 3;
- // Whether the yield approach has any credit in this context. The credit is
- // added by yield being succesfull before timing out, and decreased otherwise.
- auto& yield_credit = ctx->value;
- // Update the yield_credit based on sample runs or right after a hard failure
- bool update_ctx = false;
- // Should we reinforce the yield credit
- bool would_spin_again = false;
- // The samling base for updating the yeild credit. The sampling rate would be
- // 1/sampling_base.
- const int sampling_base = 256;
- if (max_yield_usec_ > 0) {
- update_ctx = Random::GetTLSInstance()->OneIn(sampling_base);
- if (update_ctx || yield_credit.load(std::memory_order_relaxed) >= 0) {
- // we're updating the adaptation statistics, or spinning has >
- // 50% chance of being shorter than max_yield_usec_ and causing no
- // involuntary context switches
- auto spin_begin = std::chrono::steady_clock::now();
- // this variable doesn't include the final yield (if any) that
- // causes the goal to be met
- size_t slow_yield_count = 0;
- auto iter_begin = spin_begin;
- while ((iter_begin - spin_begin) <=
- std::chrono::microseconds(max_yield_usec_)) {
- std::this_thread::yield();
- state = w->state.load(std::memory_order_acquire);
- if ((state & goal_mask) != 0) {
- // success
- would_spin_again = true;
- break;
- }
- auto now = std::chrono::steady_clock::now();
- if (now == iter_begin ||
- now - iter_begin >= std::chrono::microseconds(slow_yield_usec_)) {
- // conservatively count it as a slow yield if our clock isn't
- // accurate enough to measure the yield duration
- ++slow_yield_count;
- if (slow_yield_count >= kMaxSlowYieldsWhileSpinning) {
- // Not just one ivcsw, but several. Immediately update yield_credit
- // and fall back to blocking
- update_ctx = true;
- break;
- }
- }
- iter_begin = now;
- }
- }
- }
- if ((state & goal_mask) == 0) {
- TEST_SYNC_POINT_CALLBACK("WriteThread::AwaitState:BlockingWaiting", w);
- state = BlockingAwaitState(w, goal_mask);
- }
- if (update_ctx) {
- // Since our update is sample based, it is ok if a thread overwrites the
- // updates by other threads. Thus the update does not have to be atomic.
- auto v = yield_credit.load(std::memory_order_relaxed);
- // fixed point exponential decay with decay constant 1/1024, with +1
- // and -1 scaled to avoid overflow for int32_t
- //
- // On each update the positive credit is decayed by a facor of 1/1024 (i.e.,
- // 0.1%). If the sampled yield was successful, the credit is also increased
- // by X. Setting X=2^17 ensures that the credit never exceeds
- // 2^17*2^10=2^27, which is lower than 2^31 the upperbound of int32_t. Same
- // logic applies to negative credits.
- v = v - (v / 1024) + (would_spin_again ? 1 : -1) * 131072;
- yield_credit.store(v, std::memory_order_relaxed);
- }
- assert((state & goal_mask) != 0);
- return state;
- }
- void WriteThread::SetState(Writer* w, uint8_t new_state) {
- auto state = w->state.load(std::memory_order_acquire);
- if (state == STATE_LOCKED_WAITING ||
- !w->state.compare_exchange_strong(state, new_state)) {
- assert(state == STATE_LOCKED_WAITING);
- std::lock_guard<std::mutex> guard(w->StateMutex());
- assert(w->state.load(std::memory_order_relaxed) != new_state);
- w->state.store(new_state, std::memory_order_relaxed);
- w->StateCV().notify_one();
- }
- }
- bool WriteThread::LinkOne(Writer* w, std::atomic<Writer*>* newest_writer) {
- assert(newest_writer != nullptr);
- assert(w->state == STATE_INIT);
- Writer* writers = newest_writer->load(std::memory_order_relaxed);
- while (true) {
- // If write stall in effect, and w->no_slowdown is not true,
- // block here until stall is cleared. If its true, then return
- // immediately
- if (writers == &write_stall_dummy_) {
- if (w->no_slowdown) {
- w->status = Status::Incomplete("Write stall");
- SetState(w, STATE_COMPLETED);
- return false;
- }
- // Since no_slowdown is false, wait here to be notified of the write
- // stall clearing
- {
- MutexLock lock(&stall_mu_);
- writers = newest_writer->load(std::memory_order_relaxed);
- if (writers == &write_stall_dummy_) {
- stall_cv_.Wait();
- // Load newest_writers_ again since it may have changed
- writers = newest_writer->load(std::memory_order_relaxed);
- continue;
- }
- }
- }
- w->link_older = writers;
- if (newest_writer->compare_exchange_weak(writers, w)) {
- return (writers == nullptr);
- }
- }
- }
- bool WriteThread::LinkGroup(WriteGroup& write_group,
- std::atomic<Writer*>* newest_writer) {
- assert(newest_writer != nullptr);
- Writer* leader = write_group.leader;
- Writer* last_writer = write_group.last_writer;
- Writer* w = last_writer;
- while (true) {
- // Unset link_newer pointers to make sure when we call
- // CreateMissingNewerLinks later it create all missing links.
- w->link_newer = nullptr;
- w->write_group = nullptr;
- if (w == leader) {
- break;
- }
- w = w->link_older;
- }
- Writer* newest = newest_writer->load(std::memory_order_relaxed);
- while (true) {
- leader->link_older = newest;
- if (newest_writer->compare_exchange_weak(newest, last_writer)) {
- return (newest == nullptr);
- }
- }
- }
- void WriteThread::CreateMissingNewerLinks(Writer* head) {
- while (true) {
- Writer* next = head->link_older;
- if (next == nullptr || next->link_newer != nullptr) {
- assert(next == nullptr || next->link_newer == head);
- break;
- }
- next->link_newer = head;
- head = next;
- }
- }
- WriteThread::Writer* WriteThread::FindNextLeader(Writer* from,
- Writer* boundary) {
- assert(from != nullptr && from != boundary);
- Writer* current = from;
- while (current->link_older != boundary) {
- current = current->link_older;
- assert(current != nullptr);
- }
- return current;
- }
- void WriteThread::CompleteLeader(WriteGroup& write_group) {
- assert(write_group.size > 0);
- Writer* leader = write_group.leader;
- if (write_group.size == 1) {
- write_group.leader = nullptr;
- write_group.last_writer = nullptr;
- } else {
- assert(leader->link_newer != nullptr);
- leader->link_newer->link_older = nullptr;
- write_group.leader = leader->link_newer;
- }
- write_group.size -= 1;
- SetState(leader, STATE_COMPLETED);
- }
- void WriteThread::CompleteFollower(Writer* w, WriteGroup& write_group) {
- assert(write_group.size > 1);
- assert(w != write_group.leader);
- if (w == write_group.last_writer) {
- w->link_older->link_newer = nullptr;
- write_group.last_writer = w->link_older;
- } else {
- w->link_older->link_newer = w->link_newer;
- w->link_newer->link_older = w->link_older;
- }
- write_group.size -= 1;
- SetState(w, STATE_COMPLETED);
- }
- void WriteThread::BeginWriteStall() {
- LinkOne(&write_stall_dummy_, &newest_writer_);
- // Walk writer list until w->write_group != nullptr. The current write group
- // will not have a mix of slowdown/no_slowdown, so its ok to stop at that
- // point
- Writer* w = write_stall_dummy_.link_older;
- Writer* prev = &write_stall_dummy_;
- while (w != nullptr && w->write_group == nullptr) {
- if (w->no_slowdown) {
- prev->link_older = w->link_older;
- w->status = Status::Incomplete("Write stall");
- SetState(w, STATE_COMPLETED);
- if (prev->link_older) {
- prev->link_older->link_newer = prev;
- }
- w = prev->link_older;
- } else {
- prev = w;
- w = w->link_older;
- }
- }
- }
- void WriteThread::EndWriteStall() {
- MutexLock lock(&stall_mu_);
- // Unlink write_stall_dummy_ from the write queue. This will unblock
- // pending write threads to enqueue themselves
- assert(newest_writer_.load(std::memory_order_relaxed) == &write_stall_dummy_);
- assert(write_stall_dummy_.link_older != nullptr);
- write_stall_dummy_.link_older->link_newer = write_stall_dummy_.link_newer;
- newest_writer_.exchange(write_stall_dummy_.link_older);
- // Wake up writers
- stall_cv_.SignalAll();
- }
- static WriteThread::AdaptationContext jbg_ctx("JoinBatchGroup");
- void WriteThread::JoinBatchGroup(Writer* w) {
- TEST_SYNC_POINT_CALLBACK("WriteThread::JoinBatchGroup:Start", w);
- assert(w->batch != nullptr);
- bool linked_as_leader = LinkOne(w, &newest_writer_);
- if (linked_as_leader) {
- SetState(w, STATE_GROUP_LEADER);
- }
- TEST_SYNC_POINT_CALLBACK("WriteThread::JoinBatchGroup:Wait", w);
- if (!linked_as_leader) {
- /**
- * Wait util:
- * 1) An existing leader pick us as the new leader when it finishes
- * 2) An existing leader pick us as its follewer and
- * 2.1) finishes the memtable writes on our behalf
- * 2.2) Or tell us to finish the memtable writes in pralallel
- * 3) (pipelined write) An existing leader pick us as its follower and
- * finish book-keeping and WAL write for us, enqueue us as pending
- * memtable writer, and
- * 3.1) we become memtable writer group leader, or
- * 3.2) an existing memtable writer group leader tell us to finish memtable
- * writes in parallel.
- */
- TEST_SYNC_POINT_CALLBACK("WriteThread::JoinBatchGroup:BeganWaiting", w);
- AwaitState(w, STATE_GROUP_LEADER | STATE_MEMTABLE_WRITER_LEADER |
- STATE_PARALLEL_MEMTABLE_WRITER | STATE_COMPLETED,
- &jbg_ctx);
- TEST_SYNC_POINT_CALLBACK("WriteThread::JoinBatchGroup:DoneWaiting", w);
- }
- }
- size_t WriteThread::EnterAsBatchGroupLeader(Writer* leader,
- WriteGroup* write_group) {
- assert(leader->link_older == nullptr);
- assert(leader->batch != nullptr);
- assert(write_group != nullptr);
- size_t size = WriteBatchInternal::ByteSize(leader->batch);
- // Allow the group to grow up to a maximum size, but if the
- // original write is small, limit the growth so we do not slow
- // down the small write too much.
- size_t max_size = max_write_batch_group_size_bytes;
- const uint64_t min_batch_size_bytes = max_write_batch_group_size_bytes / 8;
- if (size <= min_batch_size_bytes) {
- max_size = size + min_batch_size_bytes;
- }
- leader->write_group = write_group;
- write_group->leader = leader;
- write_group->last_writer = leader;
- write_group->size = 1;
- Writer* newest_writer = newest_writer_.load(std::memory_order_acquire);
- // This is safe regardless of any db mutex status of the caller. Previous
- // calls to ExitAsGroupLeader either didn't call CreateMissingNewerLinks
- // (they emptied the list and then we added ourself as leader) or had to
- // explicitly wake us up (the list was non-empty when we added ourself,
- // so we have already received our MarkJoined).
- CreateMissingNewerLinks(newest_writer);
- // Tricky. Iteration start (leader) is exclusive and finish
- // (newest_writer) is inclusive. Iteration goes from old to new.
- Writer* w = leader;
- while (w != newest_writer) {
- w = w->link_newer;
- if (w->sync && !leader->sync) {
- // Do not include a sync write into a batch handled by a non-sync write.
- break;
- }
- if (w->no_slowdown != leader->no_slowdown) {
- // Do not mix writes that are ok with delays with the ones that
- // request fail on delays.
- break;
- }
- if (w->disable_wal != leader->disable_wal) {
- // Do not mix writes that enable WAL with the ones whose
- // WAL disabled.
- break;
- }
- if (w->batch == nullptr) {
- // Do not include those writes with nullptr batch. Those are not writes,
- // those are something else. They want to be alone
- break;
- }
- if (w->callback != nullptr && !w->callback->AllowWriteBatching()) {
- // dont batch writes that don't want to be batched
- break;
- }
- auto batch_size = WriteBatchInternal::ByteSize(w->batch);
- if (size + batch_size > max_size) {
- // Do not make batch too big
- break;
- }
- w->write_group = write_group;
- size += batch_size;
- write_group->last_writer = w;
- write_group->size++;
- }
- TEST_SYNC_POINT_CALLBACK("WriteThread::EnterAsBatchGroupLeader:End", w);
- return size;
- }
- void WriteThread::EnterAsMemTableWriter(Writer* leader,
- WriteGroup* write_group) {
- assert(leader != nullptr);
- assert(leader->link_older == nullptr);
- assert(leader->batch != nullptr);
- assert(write_group != nullptr);
- size_t size = WriteBatchInternal::ByteSize(leader->batch);
- // Allow the group to grow up to a maximum size, but if the
- // original write is small, limit the growth so we do not slow
- // down the small write too much.
- size_t max_size = max_write_batch_group_size_bytes;
- const uint64_t min_batch_size_bytes = max_write_batch_group_size_bytes / 8;
- if (size <= min_batch_size_bytes) {
- max_size = size + min_batch_size_bytes;
- }
- leader->write_group = write_group;
- write_group->leader = leader;
- write_group->size = 1;
- Writer* last_writer = leader;
- if (!allow_concurrent_memtable_write_ || !leader->batch->HasMerge()) {
- Writer* newest_writer = newest_memtable_writer_.load();
- CreateMissingNewerLinks(newest_writer);
- Writer* w = leader;
- while (w != newest_writer) {
- w = w->link_newer;
- if (w->batch == nullptr) {
- break;
- }
- if (w->batch->HasMerge()) {
- break;
- }
- if (!allow_concurrent_memtable_write_) {
- auto batch_size = WriteBatchInternal::ByteSize(w->batch);
- if (size + batch_size > max_size) {
- // Do not make batch too big
- break;
- }
- size += batch_size;
- }
- w->write_group = write_group;
- last_writer = w;
- write_group->size++;
- }
- }
- write_group->last_writer = last_writer;
- write_group->last_sequence =
- last_writer->sequence + WriteBatchInternal::Count(last_writer->batch) - 1;
- }
- void WriteThread::ExitAsMemTableWriter(Writer* /*self*/,
- WriteGroup& write_group) {
- Writer* leader = write_group.leader;
- Writer* last_writer = write_group.last_writer;
- Writer* newest_writer = last_writer;
- if (!newest_memtable_writer_.compare_exchange_strong(newest_writer,
- nullptr)) {
- CreateMissingNewerLinks(newest_writer);
- Writer* next_leader = last_writer->link_newer;
- assert(next_leader != nullptr);
- next_leader->link_older = nullptr;
- SetState(next_leader, STATE_MEMTABLE_WRITER_LEADER);
- }
- Writer* w = leader;
- while (true) {
- if (!write_group.status.ok()) {
- w->status = write_group.status;
- }
- Writer* next = w->link_newer;
- if (w != leader) {
- SetState(w, STATE_COMPLETED);
- }
- if (w == last_writer) {
- break;
- }
- w = next;
- }
- // Note that leader has to exit last, since it owns the write group.
- SetState(leader, STATE_COMPLETED);
- }
- void WriteThread::LaunchParallelMemTableWriters(WriteGroup* write_group) {
- assert(write_group != nullptr);
- write_group->running.store(write_group->size);
- for (auto w : *write_group) {
- SetState(w, STATE_PARALLEL_MEMTABLE_WRITER);
- }
- }
- static WriteThread::AdaptationContext cpmtw_ctx("CompleteParallelMemTableWriter");
- // This method is called by both the leader and parallel followers
- bool WriteThread::CompleteParallelMemTableWriter(Writer* w) {
- auto* write_group = w->write_group;
- if (!w->status.ok()) {
- std::lock_guard<std::mutex> guard(write_group->leader->StateMutex());
- write_group->status = w->status;
- }
- if (write_group->running-- > 1) {
- // we're not the last one
- AwaitState(w, STATE_COMPLETED, &cpmtw_ctx);
- return false;
- }
- // else we're the last parallel worker and should perform exit duties.
- w->status = write_group->status;
- return true;
- }
- void WriteThread::ExitAsBatchGroupFollower(Writer* w) {
- auto* write_group = w->write_group;
- assert(w->state == STATE_PARALLEL_MEMTABLE_WRITER);
- assert(write_group->status.ok());
- ExitAsBatchGroupLeader(*write_group, write_group->status);
- assert(w->status.ok());
- assert(w->state == STATE_COMPLETED);
- SetState(write_group->leader, STATE_COMPLETED);
- }
- static WriteThread::AdaptationContext eabgl_ctx("ExitAsBatchGroupLeader");
- void WriteThread::ExitAsBatchGroupLeader(WriteGroup& write_group,
- Status status) {
- Writer* leader = write_group.leader;
- Writer* last_writer = write_group.last_writer;
- assert(leader->link_older == nullptr);
- // Propagate memtable write error to the whole group.
- if (status.ok() && !write_group.status.ok()) {
- status = write_group.status;
- }
- if (enable_pipelined_write_) {
- // Notify writers don't write to memtable to exit.
- for (Writer* w = last_writer; w != leader;) {
- Writer* next = w->link_older;
- w->status = status;
- if (!w->ShouldWriteToMemtable()) {
- CompleteFollower(w, write_group);
- }
- w = next;
- }
- if (!leader->ShouldWriteToMemtable()) {
- CompleteLeader(write_group);
- }
- Writer* next_leader = nullptr;
- // Look for next leader before we call LinkGroup. If there isn't
- // pending writers, place a dummy writer at the tail of the queue
- // so we know the boundary of the current write group.
- Writer dummy;
- Writer* expected = last_writer;
- bool has_dummy = newest_writer_.compare_exchange_strong(expected, &dummy);
- if (!has_dummy) {
- // We find at least one pending writer when we insert dummy. We search
- // for next leader from there.
- next_leader = FindNextLeader(expected, last_writer);
- assert(next_leader != nullptr && next_leader != last_writer);
- }
- // Link the ramaining of the group to memtable writer list.
- //
- // We have to link our group to memtable writer queue before wake up the
- // next leader or set newest_writer_ to null, otherwise the next leader
- // can run ahead of us and link to memtable writer queue before we do.
- if (write_group.size > 0) {
- if (LinkGroup(write_group, &newest_memtable_writer_)) {
- // The leader can now be different from current writer.
- SetState(write_group.leader, STATE_MEMTABLE_WRITER_LEADER);
- }
- }
- // If we have inserted dummy in the queue, remove it now and check if there
- // are pending writer join the queue since we insert the dummy. If so,
- // look for next leader again.
- if (has_dummy) {
- assert(next_leader == nullptr);
- expected = &dummy;
- bool has_pending_writer =
- !newest_writer_.compare_exchange_strong(expected, nullptr);
- if (has_pending_writer) {
- next_leader = FindNextLeader(expected, &dummy);
- assert(next_leader != nullptr && next_leader != &dummy);
- }
- }
- if (next_leader != nullptr) {
- next_leader->link_older = nullptr;
- SetState(next_leader, STATE_GROUP_LEADER);
- }
- AwaitState(leader, STATE_MEMTABLE_WRITER_LEADER |
- STATE_PARALLEL_MEMTABLE_WRITER | STATE_COMPLETED,
- &eabgl_ctx);
- } else {
- Writer* head = newest_writer_.load(std::memory_order_acquire);
- if (head != last_writer ||
- !newest_writer_.compare_exchange_strong(head, nullptr)) {
- // Either w wasn't the head during the load(), or it was the head
- // during the load() but somebody else pushed onto the list before
- // we did the compare_exchange_strong (causing it to fail). In the
- // latter case compare_exchange_strong has the effect of re-reading
- // its first param (head). No need to retry a failing CAS, because
- // only a departing leader (which we are at the moment) can remove
- // nodes from the list.
- assert(head != last_writer);
- // After walking link_older starting from head (if not already done)
- // we will be able to traverse w->link_newer below. This function
- // can only be called from an active leader, only a leader can
- // clear newest_writer_, we didn't, and only a clear newest_writer_
- // could cause the next leader to start their work without a call
- // to MarkJoined, so we can definitely conclude that no other leader
- // work is going on here (with or without db mutex).
- CreateMissingNewerLinks(head);
- assert(last_writer->link_newer->link_older == last_writer);
- last_writer->link_newer->link_older = nullptr;
- // Next leader didn't self-identify, because newest_writer_ wasn't
- // nullptr when they enqueued (we were definitely enqueued before them
- // and are still in the list). That means leader handoff occurs when
- // we call MarkJoined
- SetState(last_writer->link_newer, STATE_GROUP_LEADER);
- }
- // else nobody else was waiting, although there might already be a new
- // leader now
- while (last_writer != leader) {
- last_writer->status = status;
- // we need to read link_older before calling SetState, because as soon
- // as it is marked committed the other thread's Await may return and
- // deallocate the Writer.
- auto next = last_writer->link_older;
- SetState(last_writer, STATE_COMPLETED);
- last_writer = next;
- }
- }
- }
- static WriteThread::AdaptationContext eu_ctx("EnterUnbatched");
- void WriteThread::EnterUnbatched(Writer* w, InstrumentedMutex* mu) {
- assert(w != nullptr && w->batch == nullptr);
- mu->Unlock();
- bool linked_as_leader = LinkOne(w, &newest_writer_);
- if (!linked_as_leader) {
- TEST_SYNC_POINT("WriteThread::EnterUnbatched:Wait");
- // Last leader will not pick us as a follower since our batch is nullptr
- AwaitState(w, STATE_GROUP_LEADER, &eu_ctx);
- }
- if (enable_pipelined_write_) {
- WaitForMemTableWriters();
- }
- mu->Lock();
- }
- void WriteThread::ExitUnbatched(Writer* w) {
- assert(w != nullptr);
- Writer* newest_writer = w;
- if (!newest_writer_.compare_exchange_strong(newest_writer, nullptr)) {
- CreateMissingNewerLinks(newest_writer);
- Writer* next_leader = w->link_newer;
- assert(next_leader != nullptr);
- next_leader->link_older = nullptr;
- SetState(next_leader, STATE_GROUP_LEADER);
- }
- }
- static WriteThread::AdaptationContext wfmw_ctx("WaitForMemTableWriters");
- void WriteThread::WaitForMemTableWriters() {
- assert(enable_pipelined_write_);
- if (newest_memtable_writer_.load() == nullptr) {
- return;
- }
- Writer w;
- if (!LinkOne(&w, &newest_memtable_writer_)) {
- AwaitState(&w, STATE_MEMTABLE_WRITER_LEADER, &wfmw_ctx);
- }
- newest_memtable_writer_.store(nullptr);
- }
- } // namespace ROCKSDB_NAMESPACE
|