| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225 |
- // Copyright (c) 2011-present, Facebook, Inc. All rights reserved.
- // This source code is licensed under both the GPLv2 (found in the
- // COPYING file in the root directory) and Apache 2.0 License
- // (found in the LICENSE.Apache file in the root directory).
- //
- // Copyright (c) 2011 The LevelDB Authors. All rights reserved.
- // Use of this source code is governed by a BSD-style license that can be
- // found in the LICENSE file. See the AUTHORS file for names of contributors.
- //
- #ifdef GFLAGS
- #include "db_stress_tool/db_stress_common.h"
- #include <cmath>
- ROCKSDB_NAMESPACE::DbStressEnvWrapper* db_stress_env = nullptr;
- enum ROCKSDB_NAMESPACE::CompressionType compression_type_e =
- ROCKSDB_NAMESPACE::kSnappyCompression;
- enum ROCKSDB_NAMESPACE::CompressionType bottommost_compression_type_e =
- ROCKSDB_NAMESPACE::kSnappyCompression;
- enum ROCKSDB_NAMESPACE::ChecksumType checksum_type_e =
- ROCKSDB_NAMESPACE::kCRC32c;
- enum RepFactory FLAGS_rep_factory = kSkipList;
- std::vector<double> sum_probs(100001);
- int64_t zipf_sum_size = 100000;
- namespace ROCKSDB_NAMESPACE {
- // Zipfian distribution is generated based on a pre-calculated array.
- // It should be used before start the stress test.
- // First, the probability distribution function (PDF) of this Zipfian follows
- // power low. P(x) = 1/(x^alpha).
- // So we calculate the PDF when x is from 0 to zipf_sum_size in first for loop
- // and add the PDF value togetger as c. So we get the total probability in c.
- // Next, we calculate inverse CDF of Zipfian and store the value of each in
- // an array (sum_probs). The rank is from 0 to zipf_sum_size. For example, for
- // integer k, its Zipfian CDF value is sum_probs[k].
- // Third, when we need to get an integer whose probability follows Zipfian
- // distribution, we use a rand_seed [0,1] which follows uniform distribution
- // as a seed and search it in the sum_probs via binary search. When we find
- // the closest sum_probs[i] of rand_seed, i is the integer that in
- // [0, zipf_sum_size] following Zipfian distribution with parameter alpha.
- // Finally, we can scale i to [0, max_key] scale.
- // In order to avoid that hot keys are close to each other and skew towards 0,
- // we use Rando64 to shuffle it.
- void InitializeHotKeyGenerator(double alpha) {
- double c = 0;
- for (int64_t i = 1; i <= zipf_sum_size; i++) {
- c = c + (1.0 / std::pow(static_cast<double>(i), alpha));
- }
- c = 1.0 / c;
- sum_probs[0] = 0;
- for (int64_t i = 1; i <= zipf_sum_size; i++) {
- sum_probs[i] =
- sum_probs[i - 1] + c / std::pow(static_cast<double>(i), alpha);
- }
- }
- // Generate one key that follows the Zipfian distribution. The skewness
- // is decided by the parameter alpha. Input is the rand_seed [0,1] and
- // the max of the key to be generated. If we directly return tmp_zipf_seed,
- // the closer to 0, the higher probability will be. To randomly distribute
- // the hot keys in [0, max_key], we use Random64 to shuffle it.
- int64_t GetOneHotKeyID(double rand_seed, int64_t max_key) {
- int64_t low = 1, mid, high = zipf_sum_size, zipf = 0;
- while (low <= high) {
- mid = (low + high) / 2;
- if (sum_probs[mid] >= rand_seed && sum_probs[mid - 1] < rand_seed) {
- zipf = mid;
- break;
- } else if (sum_probs[mid] >= rand_seed) {
- high = mid - 1;
- } else {
- low = mid + 1;
- }
- }
- int64_t tmp_zipf_seed = zipf * max_key / zipf_sum_size;
- Random64 rand_local(tmp_zipf_seed);
- return rand_local.Next() % max_key;
- }
- void PoolSizeChangeThread(void* v) {
- assert(FLAGS_compaction_thread_pool_adjust_interval > 0);
- ThreadState* thread = reinterpret_cast<ThreadState*>(v);
- SharedState* shared = thread->shared;
- while (true) {
- {
- MutexLock l(shared->GetMutex());
- if (shared->ShouldStopBgThread()) {
- shared->IncBgThreadsFinished();
- if (shared->BgThreadsFinished()) {
- shared->GetCondVar()->SignalAll();
- }
- return;
- }
- }
- auto thread_pool_size_base = FLAGS_max_background_compactions;
- auto thread_pool_size_var = FLAGS_compaction_thread_pool_variations;
- int new_thread_pool_size =
- thread_pool_size_base - thread_pool_size_var +
- thread->rand.Next() % (thread_pool_size_var * 2 + 1);
- if (new_thread_pool_size < 1) {
- new_thread_pool_size = 1;
- }
- db_stress_env->SetBackgroundThreads(new_thread_pool_size,
- ROCKSDB_NAMESPACE::Env::Priority::LOW);
- // Sleep up to 3 seconds
- db_stress_env->SleepForMicroseconds(
- thread->rand.Next() % FLAGS_compaction_thread_pool_adjust_interval *
- 1000 +
- 1);
- }
- }
- void DbVerificationThread(void* v) {
- assert(FLAGS_continuous_verification_interval > 0);
- auto* thread = reinterpret_cast<ThreadState*>(v);
- SharedState* shared = thread->shared;
- StressTest* stress_test = shared->GetStressTest();
- assert(stress_test != nullptr);
- while (true) {
- {
- MutexLock l(shared->GetMutex());
- if (shared->ShouldStopBgThread()) {
- shared->IncBgThreadsFinished();
- if (shared->BgThreadsFinished()) {
- shared->GetCondVar()->SignalAll();
- }
- return;
- }
- }
- if (!shared->HasVerificationFailedYet()) {
- stress_test->ContinuouslyVerifyDb(thread);
- }
- db_stress_env->SleepForMicroseconds(
- thread->rand.Next() % FLAGS_continuous_verification_interval * 1000 +
- 1);
- }
- }
- void PrintKeyValue(int cf, uint64_t key, const char* value, size_t sz) {
- if (!FLAGS_verbose) {
- return;
- }
- std::string tmp;
- tmp.reserve(sz * 2 + 16);
- char buf[4];
- for (size_t i = 0; i < sz; i++) {
- snprintf(buf, 4, "%X", value[i]);
- tmp.append(buf);
- }
- fprintf(stdout, "[CF %d] %" PRIi64 " == > (%" ROCKSDB_PRIszt ") %s\n", cf,
- key, sz, tmp.c_str());
- }
- // Note that if hot_key_alpha != 0, it generates the key based on Zipfian
- // distribution. Keys are randomly scattered to [0, FLAGS_max_key]. It does
- // not ensure the order of the keys being generated and the keys does not have
- // the active range which is related to FLAGS_active_width.
- int64_t GenerateOneKey(ThreadState* thread, uint64_t iteration) {
- const double completed_ratio =
- static_cast<double>(iteration) / FLAGS_ops_per_thread;
- const int64_t base_key = static_cast<int64_t>(
- completed_ratio * (FLAGS_max_key - FLAGS_active_width));
- int64_t rand_seed = base_key + thread->rand.Next() % FLAGS_active_width;
- int64_t cur_key = rand_seed;
- if (FLAGS_hot_key_alpha != 0) {
- // If set the Zipfian distribution Alpha to non 0, use Zipfian
- double float_rand =
- (static_cast<double>(thread->rand.Next() % FLAGS_max_key)) /
- FLAGS_max_key;
- cur_key = GetOneHotKeyID(float_rand, FLAGS_max_key);
- }
- return cur_key;
- }
- // Note that if hot_key_alpha != 0, it generates the key based on Zipfian
- // distribution. Keys being generated are in random order.
- // If user want to generate keys based on uniform distribution, user needs to
- // set hot_key_alpha == 0. It will generate the random keys in increasing
- // order in the key array (ensure key[i] >= key[i+1]) and constrained in a
- // range related to FLAGS_active_width.
- std::vector<int64_t> GenerateNKeys(ThreadState* thread, int num_keys,
- uint64_t iteration) {
- const double completed_ratio =
- static_cast<double>(iteration) / FLAGS_ops_per_thread;
- const int64_t base_key = static_cast<int64_t>(
- completed_ratio * (FLAGS_max_key - FLAGS_active_width));
- std::vector<int64_t> keys;
- keys.reserve(num_keys);
- int64_t next_key = base_key + thread->rand.Next() % FLAGS_active_width;
- keys.push_back(next_key);
- for (int i = 1; i < num_keys; ++i) {
- // Generate the key follows zipfian distribution
- if (FLAGS_hot_key_alpha != 0) {
- double float_rand =
- (static_cast<double>(thread->rand.Next() % FLAGS_max_key)) /
- FLAGS_max_key;
- next_key = GetOneHotKeyID(float_rand, FLAGS_max_key);
- } else {
- // This may result in some duplicate keys
- next_key = next_key + thread->rand.Next() %
- (FLAGS_active_width - (next_key - base_key));
- }
- keys.push_back(next_key);
- }
- return keys;
- }
- size_t GenerateValue(uint32_t rand, char* v, size_t max_sz) {
- size_t value_sz =
- ((rand % kRandomValueMaxFactor) + 1) * FLAGS_value_size_mult;
- assert(value_sz <= max_sz && value_sz >= sizeof(uint32_t));
- (void)max_sz;
- *((uint32_t*)v) = rand;
- for (size_t i = sizeof(uint32_t); i < value_sz; i++) {
- v[i] = (char)(rand ^ i);
- }
- v[value_sz] = '\0';
- return value_sz; // the size of the value set.
- }
- } // namespace ROCKSDB_NAMESPACE
- #endif // GFLAGS
|