| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483 |
- // Copyright (c) 2019-present, Facebook, Inc. All rights reserved.
- // This source code is licensed under both the GPLv2 (found in the
- // COPYING file in the root directory) and Apache 2.0 License
- // (found in the LICENSE.Apache file in the root directory).
- //
- // Implementation details of various Bloom filter implementations used in
- // RocksDB. (DynamicBloom is in a separate file for now because it
- // supports concurrent write.)
- #pragma once
- #include <stddef.h>
- #include <stdint.h>
- #include <cmath>
- #include "rocksdb/slice.h"
- #include "util/hash.h"
- #ifdef HAVE_AVX2
- #include <immintrin.h>
- #endif
- namespace ROCKSDB_NAMESPACE {
- class BloomMath {
- public:
- // False positive rate of a standard Bloom filter, for given ratio of
- // filter memory bits to added keys, and number of probes per operation.
- // (The false positive rate is effectively independent of scale, assuming
- // the implementation scales OK.)
- static double StandardFpRate(double bits_per_key, int num_probes) {
- // Standard very-good-estimate formula. See
- // https://en.wikipedia.org/wiki/Bloom_filter#Probability_of_false_positives
- return std::pow(1.0 - std::exp(-num_probes / bits_per_key), num_probes);
- }
- // False positive rate of a "blocked"/"shareded"/"cache-local" Bloom filter,
- // for given ratio of filter memory bits to added keys, number of probes per
- // operation (all within the given block or cache line size), and block or
- // cache line size.
- static double CacheLocalFpRate(double bits_per_key, int num_probes,
- int cache_line_bits) {
- double keys_per_cache_line = cache_line_bits / bits_per_key;
- // A reasonable estimate is the average of the FP rates for one standard
- // deviation above and below the mean bucket occupancy. See
- // https://github.com/facebook/rocksdb/wiki/RocksDB-Bloom-Filter#the-math
- double keys_stddev = std::sqrt(keys_per_cache_line);
- double crowded_fp = StandardFpRate(
- cache_line_bits / (keys_per_cache_line + keys_stddev), num_probes);
- double uncrowded_fp = StandardFpRate(
- cache_line_bits / (keys_per_cache_line - keys_stddev), num_probes);
- return (crowded_fp + uncrowded_fp) / 2;
- }
- // False positive rate of querying a new item against `num_keys` items, all
- // hashed to `fingerprint_bits` bits. (This assumes the fingerprint hashes
- // themselves are stored losslessly. See Section 4 of
- // http://www.ccs.neu.edu/home/pete/pub/bloom-filters-verification.pdf)
- static double FingerprintFpRate(size_t num_keys, int fingerprint_bits) {
- double inv_fingerprint_space = std::pow(0.5, fingerprint_bits);
- // Base estimate assumes each key maps to a unique fingerprint.
- // Could be > 1 in extreme cases.
- double base_estimate = num_keys * inv_fingerprint_space;
- // To account for potential overlap, we choose between two formulas
- if (base_estimate > 0.0001) {
- // A very good formula assuming we don't construct a floating point
- // number extremely close to 1. Always produces a probability < 1.
- return 1.0 - std::exp(-base_estimate);
- } else {
- // A very good formula when base_estimate is far below 1. (Subtract
- // away the integral-approximated sum that some key has same hash as
- // one coming before it in a list.)
- return base_estimate - (base_estimate * base_estimate * 0.5);
- }
- }
- // Returns the probably of either of two independent(-ish) events
- // happening, given their probabilities. (This is useful for combining
- // results from StandardFpRate or CacheLocalFpRate with FingerprintFpRate
- // for a hash-efficient Bloom filter's FP rate. See Section 4 of
- // http://www.ccs.neu.edu/home/pete/pub/bloom-filters-verification.pdf)
- static double IndependentProbabilitySum(double rate1, double rate2) {
- // Use formula that avoids floating point extremely close to 1 if
- // rates are extremely small.
- return rate1 + rate2 - (rate1 * rate2);
- }
- };
- // A fast, flexible, and accurate cache-local Bloom implementation with
- // SIMD-optimized query performance (currently using AVX2 on Intel). Write
- // performance and non-SIMD read are very good, benefiting from fastrange32
- // used in place of % and single-cycle multiplication on recent processors.
- //
- // Most other SIMD Bloom implementations sacrifice flexibility and/or
- // accuracy by requiring num_probes to be a power of two and restricting
- // where each probe can occur in a cache line. This implementation sacrifices
- // SIMD-optimization for add (might still be possible, especially with AVX512)
- // in favor of allowing any num_probes, not crossing cache line boundary,
- // and accuracy close to theoretical best accuracy for a cache-local Bloom.
- // E.g. theoretical best for 10 bits/key, num_probes=6, and 512-bit bucket
- // (Intel cache line size) is 0.9535% FP rate. This implementation yields
- // about 0.957%. (Compare to LegacyLocalityBloomImpl<false> at 1.138%, or
- // about 0.951% for 1024-bit buckets, cache line size for some ARM CPUs.)
- //
- // This implementation can use a 32-bit hash (let h2 be h1 * 0x9e3779b9) or
- // a 64-bit hash (split into two uint32s). With many millions of keys, the
- // false positive rate associated with using a 32-bit hash can dominate the
- // false positive rate of the underlying filter. At 10 bits/key setting, the
- // inflection point is about 40 million keys, so 32-bit hash is a bad idea
- // with 10s of millions of keys or more.
- //
- // Despite accepting a 64-bit hash, this implementation uses 32-bit fastrange
- // to pick a cache line, which can be faster than 64-bit in some cases.
- // This only hurts accuracy as you get into 10s of GB for a single filter,
- // and accuracy abruptly breaks down at 256GB (2^32 cache lines). Switch to
- // 64-bit fastrange if you need filters so big. ;)
- //
- // Using only a 32-bit input hash within each cache line has negligible
- // impact for any reasonable cache line / bucket size, for arbitrary filter
- // size, and potentially saves intermediate data size in some cases vs.
- // tracking full 64 bits. (Even in an implementation using 64-bit arithmetic
- // to generate indices, I might do the same, as a single multiplication
- // suffices to generate a sufficiently mixed 64 bits from 32 bits.)
- //
- // This implementation is currently tied to Intel cache line size, 64 bytes ==
- // 512 bits. If there's sufficient demand for other cache line sizes, this is
- // a pretty good implementation to extend, but slight performance enhancements
- // are possible with an alternate implementation (probably not very compatible
- // with SIMD):
- // (1) Use rotation in addition to multiplication for remixing
- // (like murmur hash). (Using multiplication alone *slightly* hurts accuracy
- // because lower bits never depend on original upper bits.)
- // (2) Extract more than one bit index from each re-mix. (Only if rotation
- // or similar is part of remix, because otherwise you're making the
- // multiplication-only problem worse.)
- // (3) Re-mix full 64 bit hash, to get maximum number of bit indices per
- // re-mix.
- //
- class FastLocalBloomImpl {
- public:
- // NOTE: this has only been validated to enough accuracy for producing
- // reasonable warnings / user feedback, not for making functional decisions.
- static double EstimatedFpRate(size_t keys, size_t bytes, int num_probes,
- int hash_bits) {
- return BloomMath::IndependentProbabilitySum(
- BloomMath::CacheLocalFpRate(8.0 * bytes / keys, num_probes,
- /*cache line bits*/ 512),
- BloomMath::FingerprintFpRate(keys, hash_bits));
- }
- static inline int ChooseNumProbes(int millibits_per_key) {
- // Since this implementation can (with AVX2) make up to 8 probes
- // for the same cost, we pick the most accurate num_probes, based
- // on actual tests of the implementation. Note that for higher
- // bits/key, the best choice for cache-local Bloom can be notably
- // smaller than standard bloom, e.g. 9 instead of 11 @ 16 b/k.
- if (millibits_per_key <= 2080) {
- return 1;
- } else if (millibits_per_key <= 3580) {
- return 2;
- } else if (millibits_per_key <= 5100) {
- return 3;
- } else if (millibits_per_key <= 6640) {
- return 4;
- } else if (millibits_per_key <= 8300) {
- return 5;
- } else if (millibits_per_key <= 10070) {
- return 6;
- } else if (millibits_per_key <= 11720) {
- return 7;
- } else if (millibits_per_key <= 14001) {
- // Would be something like <= 13800 but sacrificing *slightly* for
- // more settings using <= 8 probes.
- return 8;
- } else if (millibits_per_key <= 16050) {
- return 9;
- } else if (millibits_per_key <= 18300) {
- return 10;
- } else if (millibits_per_key <= 22001) {
- return 11;
- } else if (millibits_per_key <= 25501) {
- return 12;
- } else if (millibits_per_key > 50000) {
- // Top out at 24 probes (three sets of 8)
- return 24;
- } else {
- // Roughly optimal choices for remaining range
- // e.g.
- // 28000 -> 12, 28001 -> 13
- // 50000 -> 23, 50001 -> 24
- return (millibits_per_key - 1) / 2000 - 1;
- }
- }
- static inline void AddHash(uint32_t h1, uint32_t h2, uint32_t len_bytes,
- int num_probes, char *data) {
- uint32_t bytes_to_cache_line = fastrange32(len_bytes >> 6, h1) << 6;
- AddHashPrepared(h2, num_probes, data + bytes_to_cache_line);
- }
- static inline void AddHashPrepared(uint32_t h2, int num_probes,
- char *data_at_cache_line) {
- uint32_t h = h2;
- for (int i = 0; i < num_probes; ++i, h *= uint32_t{0x9e3779b9}) {
- // 9-bit address within 512 bit cache line
- int bitpos = h >> (32 - 9);
- data_at_cache_line[bitpos >> 3] |= (uint8_t{1} << (bitpos & 7));
- }
- }
- static inline void PrepareHash(uint32_t h1, uint32_t len_bytes,
- const char *data,
- uint32_t /*out*/ *byte_offset) {
- uint32_t bytes_to_cache_line = fastrange32(len_bytes >> 6, h1) << 6;
- PREFETCH(data + bytes_to_cache_line, 0 /* rw */, 1 /* locality */);
- PREFETCH(data + bytes_to_cache_line + 63, 0 /* rw */, 1 /* locality */);
- *byte_offset = bytes_to_cache_line;
- }
- static inline bool HashMayMatch(uint32_t h1, uint32_t h2, uint32_t len_bytes,
- int num_probes, const char *data) {
- uint32_t bytes_to_cache_line = fastrange32(len_bytes >> 6, h1) << 6;
- return HashMayMatchPrepared(h2, num_probes, data + bytes_to_cache_line);
- }
- static inline bool HashMayMatchPrepared(uint32_t h2, int num_probes,
- const char *data_at_cache_line) {
- uint32_t h = h2;
- #ifdef HAVE_AVX2
- int rem_probes = num_probes;
- // NOTE: For better performance for num_probes in {1, 2, 9, 10, 17, 18,
- // etc.} one can insert specialized code for rem_probes <= 2, bypassing
- // the SIMD code in those cases. There is a detectable but minor overhead
- // applied to other values of num_probes (when not statically determined),
- // but smoother performance curve vs. num_probes. But for now, when
- // in doubt, don't add unnecessary code.
- // Powers of 32-bit golden ratio, mod 2**32.
- const __m256i multipliers =
- _mm256_setr_epi32(0x00000001, 0x9e3779b9, 0xe35e67b1, 0x734297e9,
- 0x35fbe861, 0xdeb7c719, 0x448b211, 0x3459b749);
- for (;;) {
- // Eight copies of hash
- __m256i hash_vector = _mm256_set1_epi32(h);
- // Same effect as repeated multiplication by 0x9e3779b9 thanks to
- // associativity of multiplication.
- hash_vector = _mm256_mullo_epi32(hash_vector, multipliers);
- // Now the top 9 bits of each of the eight 32-bit values in
- // hash_vector are bit addresses for probes within the cache line.
- // While the platform-independent code uses byte addressing (6 bits
- // to pick a byte + 3 bits to pick a bit within a byte), here we work
- // with 32-bit words (4 bits to pick a word + 5 bits to pick a bit
- // within a word) because that works well with AVX2 and is equivalent
- // under little-endian.
- // Shift each right by 28 bits to get 4-bit word addresses.
- const __m256i word_addresses = _mm256_srli_epi32(hash_vector, 28);
- // Gather 32-bit values spread over 512 bits by 4-bit address. In
- // essence, we are dereferencing eight pointers within the cache
- // line.
- //
- // Option 1: AVX2 gather (seems to be a little slow - understandable)
- // const __m256i value_vector =
- // _mm256_i32gather_epi32(static_cast<const int
- // *>(data_at_cache_line),
- // word_addresses,
- // /*bytes / i32*/ 4);
- // END Option 1
- // Potentially unaligned as we're not *always* cache-aligned -> loadu
- const __m256i *mm_data =
- reinterpret_cast<const __m256i *>(data_at_cache_line);
- __m256i lower = _mm256_loadu_si256(mm_data);
- __m256i upper = _mm256_loadu_si256(mm_data + 1);
- // Option 2: AVX512VL permute hack
- // Only negligibly faster than Option 3, so not yet worth supporting
- // const __m256i value_vector =
- // _mm256_permutex2var_epi32(lower, word_addresses, upper);
- // END Option 2
- // Option 3: AVX2 permute+blend hack
- // Use lowest three bits to order probing values, as if all from same
- // 256 bit piece.
- lower = _mm256_permutevar8x32_epi32(lower, word_addresses);
- upper = _mm256_permutevar8x32_epi32(upper, word_addresses);
- // Just top 1 bit of address, to select between lower and upper.
- const __m256i upper_lower_selector = _mm256_srai_epi32(hash_vector, 31);
- // Finally: the next 8 probed 32-bit values, in probing sequence order.
- const __m256i value_vector =
- _mm256_blendv_epi8(lower, upper, upper_lower_selector);
- // END Option 3
- // We might not need to probe all 8, so build a mask for selecting only
- // what we need. (The k_selector(s) could be pre-computed but that
- // doesn't seem to make a noticeable performance difference.)
- const __m256i zero_to_seven = _mm256_setr_epi32(0, 1, 2, 3, 4, 5, 6, 7);
- // Subtract rem_probes from each of those constants
- __m256i k_selector =
- _mm256_sub_epi32(zero_to_seven, _mm256_set1_epi32(rem_probes));
- // Negative after subtract -> use/select
- // Keep only high bit (logical shift right each by 31).
- k_selector = _mm256_srli_epi32(k_selector, 31);
- // Strip off the 4 bit word address (shift left)
- __m256i bit_addresses = _mm256_slli_epi32(hash_vector, 4);
- // And keep only 5-bit (32 - 27) bit-within-32-bit-word addresses.
- bit_addresses = _mm256_srli_epi32(bit_addresses, 27);
- // Build a bit mask
- const __m256i bit_mask = _mm256_sllv_epi32(k_selector, bit_addresses);
- // Like ((~value_vector) & bit_mask) == 0)
- bool match = _mm256_testc_si256(value_vector, bit_mask) != 0;
- // This check first so that it's easy for branch predictor to optimize
- // num_probes <= 8 case, making it free of unpredictable branches.
- if (rem_probes <= 8) {
- return match;
- } else if (!match) {
- return false;
- }
- // otherwise
- // Need another iteration. 0xab25f4c1 == golden ratio to the 8th power
- h *= 0xab25f4c1;
- rem_probes -= 8;
- }
- #else
- for (int i = 0; i < num_probes; ++i, h *= uint32_t{0x9e3779b9}) {
- // 9-bit address within 512 bit cache line
- int bitpos = h >> (32 - 9);
- if ((data_at_cache_line[bitpos >> 3] & (char(1) << (bitpos & 7))) == 0) {
- return false;
- }
- }
- return true;
- #endif
- }
- };
- // A legacy Bloom filter implementation with no locality of probes (slow).
- // It uses double hashing to generate a sequence of hash values.
- // Asymptotic analysis is in [Kirsch,Mitzenmacher 2006], but known to have
- // subtle accuracy flaws for practical sizes [Dillinger,Manolios 2004].
- //
- // DO NOT REUSE
- //
- class LegacyNoLocalityBloomImpl {
- public:
- static inline int ChooseNumProbes(int bits_per_key) {
- // We intentionally round down to reduce probing cost a little bit
- int num_probes = static_cast<int>(bits_per_key * 0.69); // 0.69 =~ ln(2)
- if (num_probes < 1) num_probes = 1;
- if (num_probes > 30) num_probes = 30;
- return num_probes;
- }
- static inline void AddHash(uint32_t h, uint32_t total_bits, int num_probes,
- char *data) {
- const uint32_t delta = (h >> 17) | (h << 15); // Rotate right 17 bits
- for (int i = 0; i < num_probes; i++) {
- const uint32_t bitpos = h % total_bits;
- data[bitpos / 8] |= (1 << (bitpos % 8));
- h += delta;
- }
- }
- static inline bool HashMayMatch(uint32_t h, uint32_t total_bits,
- int num_probes, const char *data) {
- const uint32_t delta = (h >> 17) | (h << 15); // Rotate right 17 bits
- for (int i = 0; i < num_probes; i++) {
- const uint32_t bitpos = h % total_bits;
- if ((data[bitpos / 8] & (1 << (bitpos % 8))) == 0) {
- return false;
- }
- h += delta;
- }
- return true;
- }
- };
- // A legacy Bloom filter implementation with probes local to a single
- // cache line (fast). Because SST files might be transported between
- // platforms, the cache line size is a parameter rather than hard coded.
- // (But if specified as a constant parameter, an optimizing compiler
- // should take advantage of that.)
- //
- // When ExtraRotates is false, this implementation is notably deficient in
- // accuracy. Specifically, it uses double hashing with a 1/512 chance of the
- // increment being zero (when cache line size is 512 bits). Thus, there's a
- // 1/512 chance of probing only one index, which we'd expect to incur about
- // a 1/2 * 1/512 or absolute 0.1% FP rate penalty. More detail at
- // https://github.com/facebook/rocksdb/issues/4120
- //
- // DO NOT REUSE
- //
- template <bool ExtraRotates>
- class LegacyLocalityBloomImpl {
- private:
- static inline uint32_t GetLine(uint32_t h, uint32_t num_lines) {
- uint32_t offset_h = ExtraRotates ? (h >> 11) | (h << 21) : h;
- return offset_h % num_lines;
- }
- public:
- // NOTE: this has only been validated to enough accuracy for producing
- // reasonable warnings / user feedback, not for making functional decisions.
- static double EstimatedFpRate(size_t keys, size_t bytes, int num_probes) {
- double bits_per_key = 8.0 * bytes / keys;
- double filter_rate = BloomMath::CacheLocalFpRate(bits_per_key, num_probes,
- /*cache line bits*/ 512);
- if (!ExtraRotates) {
- // Good estimate of impact of flaw in index computation.
- // Adds roughly 0.002 around 50 bits/key and 0.001 around 100 bits/key.
- // The + 22 shifts it nicely to fit for lower bits/key.
- filter_rate += 0.1 / (bits_per_key * 0.75 + 22);
- } else {
- // Not yet validated
- assert(false);
- }
- // Always uses 32-bit hash
- double fingerprint_rate = BloomMath::FingerprintFpRate(keys, 32);
- return BloomMath::IndependentProbabilitySum(filter_rate, fingerprint_rate);
- }
- static inline void AddHash(uint32_t h, uint32_t num_lines, int num_probes,
- char *data, int log2_cache_line_bytes) {
- const int log2_cache_line_bits = log2_cache_line_bytes + 3;
- char *data_at_offset =
- data + (GetLine(h, num_lines) << log2_cache_line_bytes);
- const uint32_t delta = (h >> 17) | (h << 15);
- for (int i = 0; i < num_probes; ++i) {
- // Mask to bit-within-cache-line address
- const uint32_t bitpos = h & ((1 << log2_cache_line_bits) - 1);
- data_at_offset[bitpos / 8] |= (1 << (bitpos % 8));
- if (ExtraRotates) {
- h = (h >> log2_cache_line_bits) | (h << (32 - log2_cache_line_bits));
- }
- h += delta;
- }
- }
- static inline void PrepareHashMayMatch(uint32_t h, uint32_t num_lines,
- const char *data,
- uint32_t /*out*/ *byte_offset,
- int log2_cache_line_bytes) {
- uint32_t b = GetLine(h, num_lines) << log2_cache_line_bytes;
- PREFETCH(data + b, 0 /* rw */, 1 /* locality */);
- PREFETCH(data + b + ((1 << log2_cache_line_bytes) - 1), 0 /* rw */,
- 1 /* locality */);
- *byte_offset = b;
- }
- static inline bool HashMayMatch(uint32_t h, uint32_t num_lines,
- int num_probes, const char *data,
- int log2_cache_line_bytes) {
- uint32_t b = GetLine(h, num_lines) << log2_cache_line_bytes;
- return HashMayMatchPrepared(h, num_probes, data + b, log2_cache_line_bytes);
- }
- static inline bool HashMayMatchPrepared(uint32_t h, int num_probes,
- const char *data_at_offset,
- int log2_cache_line_bytes) {
- const int log2_cache_line_bits = log2_cache_line_bytes + 3;
- const uint32_t delta = (h >> 17) | (h << 15);
- for (int i = 0; i < num_probes; ++i) {
- // Mask to bit-within-cache-line address
- const uint32_t bitpos = h & ((1 << log2_cache_line_bits) - 1);
- if (((data_at_offset[bitpos / 8]) & (1 << (bitpos % 8))) == 0) {
- return false;
- }
- if (ExtraRotates) {
- h = (h >> log2_cache_line_bits) | (h << (32 - log2_cache_line_bits));
- }
- h += delta;
- }
- return true;
- }
- };
- } // namespace ROCKSDB_NAMESPACE
|