| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339 |
- // Copyright (c) 2011-present, Facebook, Inc. All rights reserved.
- // This source code is licensed under both the GPLv2 (found in the
- // COPYING file in the root directory) and Apache 2.0 License
- // (found in the LICENSE.Apache file in the root directory).
- //
- // Copyright (c) 2011 The LevelDB Authors. All rights reserved.
- // Use of this source code is governed by a BSD-style license that can be
- // found in the LICENSE file. See the AUTHORS file for names of contributors.
- #include "util/rate_limiter.h"
- #include "monitoring/statistics.h"
- #include "port/port.h"
- #include "rocksdb/env.h"
- #include "test_util/sync_point.h"
- #include "util/aligned_buffer.h"
- namespace ROCKSDB_NAMESPACE {
- size_t RateLimiter::RequestToken(size_t bytes, size_t alignment,
- Env::IOPriority io_priority, Statistics* stats,
- RateLimiter::OpType op_type) {
- if (io_priority < Env::IO_TOTAL && IsRateLimited(op_type)) {
- bytes = std::min(bytes, static_cast<size_t>(GetSingleBurstBytes()));
- if (alignment > 0) {
- // Here we may actually require more than burst and block
- // but we can not write less than one page at a time on direct I/O
- // thus we may want not to use ratelimiter
- bytes = std::max(alignment, TruncateToPageBoundary(alignment, bytes));
- }
- Request(bytes, io_priority, stats, op_type);
- }
- return bytes;
- }
- // Pending request
- struct GenericRateLimiter::Req {
- explicit Req(int64_t _bytes, port::Mutex* _mu)
- : request_bytes(_bytes), bytes(_bytes), cv(_mu), granted(false) {}
- int64_t request_bytes;
- int64_t bytes;
- port::CondVar cv;
- bool granted;
- };
- GenericRateLimiter::GenericRateLimiter(int64_t rate_bytes_per_sec,
- int64_t refill_period_us,
- int32_t fairness, RateLimiter::Mode mode,
- Env* env, bool auto_tuned)
- : RateLimiter(mode),
- refill_period_us_(refill_period_us),
- rate_bytes_per_sec_(auto_tuned ? rate_bytes_per_sec / 2
- : rate_bytes_per_sec),
- refill_bytes_per_period_(
- CalculateRefillBytesPerPeriod(rate_bytes_per_sec_)),
- env_(env),
- stop_(false),
- exit_cv_(&request_mutex_),
- requests_to_wait_(0),
- available_bytes_(0),
- next_refill_us_(NowMicrosMonotonic(env_)),
- fairness_(fairness > 100 ? 100 : fairness),
- rnd_((uint32_t)time(nullptr)),
- leader_(nullptr),
- auto_tuned_(auto_tuned),
- num_drains_(0),
- prev_num_drains_(0),
- max_bytes_per_sec_(rate_bytes_per_sec),
- tuned_time_(NowMicrosMonotonic(env_)) {
- total_requests_[0] = 0;
- total_requests_[1] = 0;
- total_bytes_through_[0] = 0;
- total_bytes_through_[1] = 0;
- }
- GenericRateLimiter::~GenericRateLimiter() {
- MutexLock g(&request_mutex_);
- stop_ = true;
- requests_to_wait_ = static_cast<int32_t>(queue_[Env::IO_LOW].size() +
- queue_[Env::IO_HIGH].size());
- for (auto& r : queue_[Env::IO_HIGH]) {
- r->cv.Signal();
- }
- for (auto& r : queue_[Env::IO_LOW]) {
- r->cv.Signal();
- }
- while (requests_to_wait_ > 0) {
- exit_cv_.Wait();
- }
- }
- // This API allows user to dynamically change rate limiter's bytes per second.
- void GenericRateLimiter::SetBytesPerSecond(int64_t bytes_per_second) {
- assert(bytes_per_second > 0);
- rate_bytes_per_sec_ = bytes_per_second;
- refill_bytes_per_period_.store(
- CalculateRefillBytesPerPeriod(bytes_per_second),
- std::memory_order_relaxed);
- }
- void GenericRateLimiter::Request(int64_t bytes, const Env::IOPriority pri,
- Statistics* stats) {
- assert(bytes <= refill_bytes_per_period_.load(std::memory_order_relaxed));
- TEST_SYNC_POINT("GenericRateLimiter::Request");
- TEST_SYNC_POINT_CALLBACK("GenericRateLimiter::Request:1",
- &rate_bytes_per_sec_);
- MutexLock g(&request_mutex_);
- if (auto_tuned_) {
- static const int kRefillsPerTune = 100;
- std::chrono::microseconds now(NowMicrosMonotonic(env_));
- if (now - tuned_time_ >=
- kRefillsPerTune * std::chrono::microseconds(refill_period_us_)) {
- Tune();
- }
- }
- if (stop_) {
- return;
- }
- ++total_requests_[pri];
- if (available_bytes_ >= bytes) {
- // Refill thread assigns quota and notifies requests waiting on
- // the queue under mutex. So if we get here, that means nobody
- // is waiting?
- available_bytes_ -= bytes;
- total_bytes_through_[pri] += bytes;
- return;
- }
- // Request cannot be satisfied at this moment, enqueue
- Req r(bytes, &request_mutex_);
- queue_[pri].push_back(&r);
- do {
- bool timedout = false;
- // Leader election, candidates can be:
- // (1) a new incoming request,
- // (2) a previous leader, whose quota has not been not assigned yet due
- // to lower priority
- // (3) a previous waiter at the front of queue, who got notified by
- // previous leader
- if (leader_ == nullptr &&
- ((!queue_[Env::IO_HIGH].empty() &&
- &r == queue_[Env::IO_HIGH].front()) ||
- (!queue_[Env::IO_LOW].empty() &&
- &r == queue_[Env::IO_LOW].front()))) {
- leader_ = &r;
- int64_t delta = next_refill_us_ - NowMicrosMonotonic(env_);
- delta = delta > 0 ? delta : 0;
- if (delta == 0) {
- timedout = true;
- } else {
- int64_t wait_until = env_->NowMicros() + delta;
- RecordTick(stats, NUMBER_RATE_LIMITER_DRAINS);
- ++num_drains_;
- timedout = r.cv.TimedWait(wait_until);
- }
- } else {
- // Not at the front of queue or an leader has already been elected
- r.cv.Wait();
- }
- // request_mutex_ is held from now on
- if (stop_) {
- --requests_to_wait_;
- exit_cv_.Signal();
- return;
- }
- // Make sure the waken up request is always the header of its queue
- assert(r.granted ||
- (!queue_[Env::IO_HIGH].empty() &&
- &r == queue_[Env::IO_HIGH].front()) ||
- (!queue_[Env::IO_LOW].empty() &&
- &r == queue_[Env::IO_LOW].front()));
- assert(leader_ == nullptr ||
- (!queue_[Env::IO_HIGH].empty() &&
- leader_ == queue_[Env::IO_HIGH].front()) ||
- (!queue_[Env::IO_LOW].empty() &&
- leader_ == queue_[Env::IO_LOW].front()));
- if (leader_ == &r) {
- // Waken up from TimedWait()
- if (timedout) {
- // Time to do refill!
- Refill();
- // Re-elect a new leader regardless. This is to simplify the
- // election handling.
- leader_ = nullptr;
- // Notify the header of queue if current leader is going away
- if (r.granted) {
- // Current leader already got granted with quota. Notify header
- // of waiting queue to participate next round of election.
- assert((queue_[Env::IO_HIGH].empty() ||
- &r != queue_[Env::IO_HIGH].front()) &&
- (queue_[Env::IO_LOW].empty() ||
- &r != queue_[Env::IO_LOW].front()));
- if (!queue_[Env::IO_HIGH].empty()) {
- queue_[Env::IO_HIGH].front()->cv.Signal();
- } else if (!queue_[Env::IO_LOW].empty()) {
- queue_[Env::IO_LOW].front()->cv.Signal();
- }
- // Done
- break;
- }
- } else {
- // Spontaneous wake up, need to continue to wait
- assert(!r.granted);
- leader_ = nullptr;
- }
- } else {
- // Waken up by previous leader:
- // (1) if requested quota is granted, it is done.
- // (2) if requested quota is not granted, this means current thread
- // was picked as a new leader candidate (previous leader got quota).
- // It needs to participate leader election because a new request may
- // come in before this thread gets waken up. So it may actually need
- // to do Wait() again.
- assert(!timedout);
- }
- } while (!r.granted);
- }
- void GenericRateLimiter::Refill() {
- TEST_SYNC_POINT("GenericRateLimiter::Refill");
- next_refill_us_ = NowMicrosMonotonic(env_) + refill_period_us_;
- // Carry over the left over quota from the last period
- auto refill_bytes_per_period =
- refill_bytes_per_period_.load(std::memory_order_relaxed);
- if (available_bytes_ < refill_bytes_per_period) {
- available_bytes_ += refill_bytes_per_period;
- }
- int use_low_pri_first = rnd_.OneIn(fairness_) ? 0 : 1;
- for (int q = 0; q < 2; ++q) {
- auto use_pri = (use_low_pri_first == q) ? Env::IO_LOW : Env::IO_HIGH;
- auto* queue = &queue_[use_pri];
- while (!queue->empty()) {
- auto* next_req = queue->front();
- if (available_bytes_ < next_req->request_bytes) {
- // avoid starvation
- next_req->request_bytes -= available_bytes_;
- available_bytes_ = 0;
- break;
- }
- available_bytes_ -= next_req->request_bytes;
- next_req->request_bytes = 0;
- total_bytes_through_[use_pri] += next_req->bytes;
- queue->pop_front();
- next_req->granted = true;
- if (next_req != leader_) {
- // Quota granted, signal the thread
- next_req->cv.Signal();
- }
- }
- }
- }
- int64_t GenericRateLimiter::CalculateRefillBytesPerPeriod(
- int64_t rate_bytes_per_sec) {
- if (port::kMaxInt64 / rate_bytes_per_sec < refill_period_us_) {
- // Avoid unexpected result in the overflow case. The result now is still
- // inaccurate but is a number that is large enough.
- return port::kMaxInt64 / 1000000;
- } else {
- return std::max(kMinRefillBytesPerPeriod,
- rate_bytes_per_sec * refill_period_us_ / 1000000);
- }
- }
- Status GenericRateLimiter::Tune() {
- const int kLowWatermarkPct = 50;
- const int kHighWatermarkPct = 90;
- const int kAdjustFactorPct = 5;
- // computed rate limit will be in
- // `[max_bytes_per_sec_ / kAllowedRangeFactor, max_bytes_per_sec_]`.
- const int kAllowedRangeFactor = 20;
- std::chrono::microseconds prev_tuned_time = tuned_time_;
- tuned_time_ = std::chrono::microseconds(NowMicrosMonotonic(env_));
- int64_t elapsed_intervals = (tuned_time_ - prev_tuned_time +
- std::chrono::microseconds(refill_period_us_) -
- std::chrono::microseconds(1)) /
- std::chrono::microseconds(refill_period_us_);
- // We tune every kRefillsPerTune intervals, so the overflow and division-by-
- // zero conditions should never happen.
- assert(num_drains_ - prev_num_drains_ <= port::kMaxInt64 / 100);
- assert(elapsed_intervals > 0);
- int64_t drained_pct =
- (num_drains_ - prev_num_drains_) * 100 / elapsed_intervals;
- int64_t prev_bytes_per_sec = GetBytesPerSecond();
- int64_t new_bytes_per_sec;
- if (drained_pct == 0) {
- new_bytes_per_sec = max_bytes_per_sec_ / kAllowedRangeFactor;
- } else if (drained_pct < kLowWatermarkPct) {
- // sanitize to prevent overflow
- int64_t sanitized_prev_bytes_per_sec =
- std::min(prev_bytes_per_sec, port::kMaxInt64 / 100);
- new_bytes_per_sec =
- std::max(max_bytes_per_sec_ / kAllowedRangeFactor,
- sanitized_prev_bytes_per_sec * 100 / (100 + kAdjustFactorPct));
- } else if (drained_pct > kHighWatermarkPct) {
- // sanitize to prevent overflow
- int64_t sanitized_prev_bytes_per_sec = std::min(
- prev_bytes_per_sec, port::kMaxInt64 / (100 + kAdjustFactorPct));
- new_bytes_per_sec =
- std::min(max_bytes_per_sec_,
- sanitized_prev_bytes_per_sec * (100 + kAdjustFactorPct) / 100);
- } else {
- new_bytes_per_sec = prev_bytes_per_sec;
- }
- if (new_bytes_per_sec != prev_bytes_per_sec) {
- SetBytesPerSecond(new_bytes_per_sec);
- }
- num_drains_ = prev_num_drains_;
- return Status::OK();
- }
- RateLimiter* NewGenericRateLimiter(
- int64_t rate_bytes_per_sec, int64_t refill_period_us /* = 100 * 1000 */,
- int32_t fairness /* = 10 */,
- RateLimiter::Mode mode /* = RateLimiter::Mode::kWritesOnly */,
- bool auto_tuned /* = false */) {
- assert(rate_bytes_per_sec > 0);
- assert(refill_period_us > 0);
- assert(fairness > 0);
- return new GenericRateLimiter(rate_bytes_per_sec, refill_period_us, fairness,
- mode, Env::Default(), auto_tuned);
- }
- } // namespace ROCKSDB_NAMESPACE
|