| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137 |
- // Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved.
- // This source code is licensed under both the GPLv2 (found in the
- // COPYING file in the root directory) and Apache 2.0 License
- // (found in the LICENSE.Apache file in the root directory).
- #pragma once
- #include <cmath>
- #include "port/port.h" // for PREFETCH
- #include "util/fastrange.h"
- #include "util/ribbon_alg.h"
- namespace ROCKSDB_NAMESPACE {
- namespace ribbon {
- // RIBBON PHSF & RIBBON Filter (Rapid Incremental Boolean Banding ON-the-fly)
- //
- // ribbon_impl.h: templated (parameterized) standard implementations
- //
- // Ribbon is a Perfect Hash Static Function construction useful as a compact
- // static Bloom filter alternative. See ribbon_alg.h for core algorithms
- // and core design details.
- //
- // TODO: more details on trade-offs and practical issues.
- //
- // APIs for configuring Ribbon are in ribbon_config.h
- // Ribbon implementations in this file take these parameters, which must be
- // provided in a class/struct type with members expressed in this concept:
- // concept TypesAndSettings {
- // // See RibbonTypes and *Hasher in ribbon_alg.h, except here we have
- // // the added constraint that Hash be equivalent to either uint32_t or
- // // uint64_t.
- // typename Hash;
- // typename CoeffRow;
- // typename ResultRow;
- // typename Index;
- // typename Key;
- // static constexpr bool kFirstCoeffAlwaysOne;
- //
- // // An unsigned integer type for identifying a hash seed, typically
- // // uint32_t or uint64_t. Importantly, this is the amount of data
- // // stored in memory for identifying a raw seed. See StandardHasher.
- // typename Seed;
- //
- // // When true, the PHSF implements a static filter, expecting just
- // // keys as inputs for construction. When false, implements a general
- // // PHSF and expects std::pair<Key, ResultRow> as inputs for
- // // construction.
- // static constexpr bool kIsFilter;
- //
- // // When true, enables a special "homogeneous" filter implementation that
- // // is slightly faster to construct, and never fails to construct though
- // // FP rate can quickly explode in cases where corresponding
- // // non-homogeneous filter would fail (or nearly fail?) to construct.
- // // For smaller filters, you can configure with ConstructionFailureChance
- // // smaller than desired FP rate to largely counteract this effect.
- // // TODO: configuring Homogeneous Ribbon for arbitrarily large filters
- // // based on data from OptimizeHomogAtScale
- // static constexpr bool kHomogeneous;
- //
- // // When true, adds a tiny bit more hashing logic on queries and
- // // construction to improve utilization at the beginning and end of
- // // the structure. Recommended when CoeffRow is only 64 bits (or
- // // less), so typical num_starts < 10k. Although this is compatible
- // // with kHomogeneous, the competing space vs. time priorities might
- // // not be useful.
- // static constexpr bool kUseSmash;
- //
- // // When true, allows number of "starts" to be zero, for best support
- // // of the "no keys to add" case by always returning false for filter
- // // queries. (This is distinct from the "keys added but no space for
- // // any data" case, in which a filter always returns true.) The cost
- // // supporting this is a conditional branch (probably predictable) in
- // // queries.
- // static constexpr bool kAllowZeroStarts;
- //
- // // A seedable stock hash function on Keys. All bits of Hash must
- // // be reasonably high quality. XXH functions recommended, but
- // // Murmur, City, Farm, etc. also work.
- // static Hash HashFn(const Key &, Seed raw_seed);
- // };
- // A bit of a hack to automatically construct the type for
- // AddInput based on a constexpr bool.
- template <typename Key, typename ResultRow, bool IsFilter>
- struct AddInputSelector {
- // For general PHSF, not filter
- using T = std::pair<Key, ResultRow>;
- };
- template <typename Key, typename ResultRow>
- struct AddInputSelector<Key, ResultRow, true /*IsFilter*/> {
- // For Filter
- using T = Key;
- };
- // To avoid writing 'typename' everywhere that we use types like 'Index'
- #define IMPORT_RIBBON_TYPES_AND_SETTINGS(TypesAndSettings) \
- using CoeffRow = typename TypesAndSettings::CoeffRow; \
- using ResultRow = typename TypesAndSettings::ResultRow; \
- using Index = typename TypesAndSettings::Index; \
- using Hash = typename TypesAndSettings::Hash; \
- using Key = typename TypesAndSettings::Key; \
- using Seed = typename TypesAndSettings::Seed; \
- \
- /* Some more additions */ \
- using QueryInput = Key; \
- using AddInput = typename ROCKSDB_NAMESPACE::ribbon::AddInputSelector< \
- Key, ResultRow, TypesAndSettings::kIsFilter>::T; \
- static constexpr auto kCoeffBits = \
- static_cast<Index>(sizeof(CoeffRow) * 8U); \
- \
- /* Export to algorithm */ \
- static constexpr bool kFirstCoeffAlwaysOne = \
- TypesAndSettings::kFirstCoeffAlwaysOne; \
- \
- static_assert(sizeof(CoeffRow) + sizeof(ResultRow) + sizeof(Index) + \
- sizeof(Hash) + sizeof(Key) + sizeof(Seed) + \
- sizeof(QueryInput) + sizeof(AddInput) + kCoeffBits + \
- kFirstCoeffAlwaysOne > \
- 0, \
- "avoid unused warnings, semicolon expected after macro call")
- #ifdef _MSC_VER
- #pragma warning(push)
- #pragma warning(disable : 4309) // cast truncating constant
- #pragma warning(disable : 4307) // arithmetic constant overflow
- #endif
- // StandardHasher: A standard implementation of concepts RibbonTypes,
- // PhsfQueryHasher, FilterQueryHasher, and BandingHasher from ribbon_alg.h.
- //
- // This implementation should be suitable for most all practical purposes
- // as it "behaves" across a wide range of settings, with little room left
- // for improvement. The key functionality in this hasher is generating
- // CoeffRows, starts, and (for filters) ResultRows, which could be ~150
- // bits of data or more, from a modest hash of 64 or even just 32 bits, with
- // enough uniformity and bitwise independence to be close to "the best you
- // can do" with available hash information in terms of FP rate and
- // compactness. (64 bits recommended and sufficient for PHSF practical
- // purposes.)
- //
- // Another feature of this hasher is a minimal "premixing" of seeds before
- // they are provided to TypesAndSettings::HashFn in case that function does
- // not provide sufficiently independent hashes when iterating merely
- // sequentially on seeds. (This for example works around a problem with the
- // preview version 0.7.2 of XXH3 used in RocksDB, a.k.a. XXPH3 or Hash64, and
- // MurmurHash1 used in RocksDB, a.k.a. Hash.) We say this pre-mixing step
- // translates "ordinal seeds," which we iterate sequentially to find a
- // solution, into "raw seeds," with many more bits changing for each
- // iteration. The translation is an easily reversible lightweight mixing,
- // not suitable for hashing on its own. An advantage of this approach is that
- // StandardHasher can store just the raw seed (e.g. 64 bits) for fast query
- // times, while from the application perspective, we can limit to a small
- // number of ordinal keys (e.g. 64 in 6 bits) for saving in metadata.
- //
- // The default constructor initializes the seed to ordinal seed zero, which
- // is equal to raw seed zero.
- //
- template <class TypesAndSettings>
- class StandardHasher {
- public:
- IMPORT_RIBBON_TYPES_AND_SETTINGS(TypesAndSettings);
- inline Hash GetHash(const Key& key) const {
- return TypesAndSettings::HashFn(key, raw_seed_);
- }
- // For when AddInput == pair<Key, ResultRow> (kIsFilter == false)
- inline Hash GetHash(const std::pair<Key, ResultRow>& bi) const {
- return GetHash(bi.first);
- }
- inline Index GetStart(Hash h, Index num_starts) const {
- // This is "critical path" code because it's required before memory
- // lookup.
- //
- // FastRange gives us a fast and effective mapping from h to the
- // appropriate range. This depends most, sometimes exclusively, on
- // upper bits of h.
- //
- if (TypesAndSettings::kUseSmash) {
- // Extra logic to "smash" entries at beginning and end, for
- // better utilization. For example, without smash and with
- // kFirstCoeffAlwaysOne, there's about a 30% chance that the
- // first slot in the banding will be unused, and worse without
- // kFirstCoeffAlwaysOne. The ending slots are even less utilized
- // without smash.
- //
- // But since this only affects roughly kCoeffBits of the slots,
- // it's usually small enough to be ignorable (less computation in
- // this function) when number of slots is roughly 10k or larger.
- //
- // The best values for these smash weights might depend on how
- // densely you're packing entries, and also kCoeffBits, but this
- // seems to work well for roughly 95% success probability.
- //
- constexpr Index kFrontSmash = kCoeffBits / 4;
- constexpr Index kBackSmash = kCoeffBits / 4;
- Index start = FastRangeGeneric(h, num_starts + kFrontSmash + kBackSmash);
- start = std::max(start, kFrontSmash);
- start -= kFrontSmash;
- start = std::min(start, num_starts - 1);
- return start;
- } else {
- // For query speed, we allow small number of initial and final
- // entries to be under-utilized.
- // NOTE: This call statically enforces that Hash is equivalent to
- // either uint32_t or uint64_t.
- return FastRangeGeneric(h, num_starts);
- }
- }
- inline CoeffRow GetCoeffRow(Hash h) const {
- // This is not so much "critical path" code because it can be done in
- // parallel (instruction level) with memory lookup.
- //
- // When we might have many entries squeezed into a single start,
- // we need reasonably good remixing for CoeffRow.
- if (TypesAndSettings::kUseSmash) {
- // Reasonably good, reasonably fast, reasonably general.
- // Probably not 1:1 but probably close enough.
- Unsigned128 a = Multiply64to128(h, kAltCoeffFactor1);
- Unsigned128 b = Multiply64to128(h, kAltCoeffFactor2);
- auto cr = static_cast<CoeffRow>(b ^ (a << 64) ^ (a >> 64));
- // Now ensure the value is non-zero
- if (kFirstCoeffAlwaysOne) {
- cr |= 1;
- } else {
- // Still have to ensure some bit is non-zero
- cr |= (cr == 0) ? 1 : 0;
- }
- return cr;
- }
- // If not kUseSmash, we ensure we're not squeezing many entries into a
- // single start, in part by ensuring num_starts > num_slots / 2. Thus,
- // here we do not need good remixing for CoeffRow, but just enough that
- // (a) every bit is reasonably independent from Start.
- // (b) every Hash-length bit subsequence of the CoeffRow has full or
- // nearly full entropy from h.
- // (c) if nontrivial bit subsequences within are correlated, it needs to
- // be more complicated than exact copy or bitwise not (at least without
- // kFirstCoeffAlwaysOne), or else there seems to be a kind of
- // correlated clustering effect.
- // (d) the CoeffRow is not zero, so that no one input on its own can
- // doom construction success. (Preferably a mix of 1's and 0's if
- // satisfying above.)
- // First, establish sufficient bitwise independence from Start, with
- // multiplication by a large random prime.
- // Note that we cast to Hash because if we use product bits beyond
- // original input size, that's going to correlate with Start (FastRange)
- // even with a (likely) different multiplier here.
- Hash a = h * kCoeffAndResultFactor;
- static_assert(
- sizeof(Hash) == sizeof(uint64_t) || sizeof(Hash) == sizeof(uint32_t),
- "Supported sizes");
- // If that's big enough, we're done. If not, we have to expand it,
- // maybe up to 4x size.
- uint64_t b;
- if (sizeof(Hash) < sizeof(uint64_t)) {
- // Almost-trivial hash expansion (OK - see above), favoring roughly
- // equal number of 1's and 0's in result
- b = (uint64_t{a} << 32) ^ (a ^ kCoeffXor32);
- } else {
- b = a;
- }
- static_assert(sizeof(CoeffRow) <= sizeof(Unsigned128), "Supported sizes");
- Unsigned128 c;
- if (sizeof(uint64_t) < sizeof(CoeffRow)) {
- // Almost-trivial hash expansion (OK - see above), favoring roughly
- // equal number of 1's and 0's in result
- c = (Unsigned128{b} << 64) ^ (b ^ kCoeffXor64);
- } else {
- c = b;
- }
- auto cr = static_cast<CoeffRow>(c);
- // Now ensure the value is non-zero
- if (kFirstCoeffAlwaysOne) {
- cr |= 1;
- } else if (sizeof(CoeffRow) == sizeof(Hash)) {
- // Still have to ensure some bit is non-zero
- cr |= (cr == 0) ? 1 : 0;
- } else {
- // (We did trivial expansion with constant xor, which ensures some
- // bits are non-zero.)
- }
- return cr;
- }
- inline ResultRow GetResultRowMask() const {
- // TODO: will be used with InterleavedSolutionStorage?
- // For now, all bits set (note: might be a small type so might need to
- // narrow after promotion)
- return static_cast<ResultRow>(~ResultRow{0});
- }
- inline ResultRow GetResultRowFromHash(Hash h) const {
- if (TypesAndSettings::kIsFilter && !TypesAndSettings::kHomogeneous) {
- // This is not so much "critical path" code because it can be done in
- // parallel (instruction level) with memory lookup.
- //
- // ResultRow bits only needs to be independent from CoeffRow bits if
- // many entries might have the same start location, where "many" is
- // comparable to number of hash bits or kCoeffBits. If !kUseSmash
- // and num_starts > kCoeffBits, it is safe and efficient to draw from
- // the same bits computed for CoeffRow, which are reasonably
- // independent from Start. (Inlining and common subexpression
- // elimination with GetCoeffRow should make this
- // a single shared multiplication in generated code when !kUseSmash.)
- Hash a = h * kCoeffAndResultFactor;
- // The bits here that are *most* independent of Start are the highest
- // order bits (as in Knuth multiplicative hash). To make those the
- // most preferred for use in the result row, we do a bswap here.
- auto rr = static_cast<ResultRow>(EndianSwapValue(a));
- return rr & GetResultRowMask();
- } else {
- // Must be zero
- return 0;
- }
- }
- // For when AddInput == Key (kIsFilter == true)
- inline ResultRow GetResultRowFromInput(const Key&) const {
- // Must be zero
- return 0;
- }
- // For when AddInput == pair<Key, ResultRow> (kIsFilter == false)
- inline ResultRow GetResultRowFromInput(
- const std::pair<Key, ResultRow>& bi) const {
- // Simple extraction
- return bi.second;
- }
- // Seed tracking APIs - see class comment
- void SetRawSeed(Seed seed) { raw_seed_ = seed; }
- Seed GetRawSeed() { return raw_seed_; }
- void SetOrdinalSeed(Seed count) {
- // A simple, reversible mixing of any size (whole bytes) up to 64 bits.
- // This allows casting the raw seed to any smaller size we use for
- // ordinal seeds without risk of duplicate raw seeds for unique ordinal
- // seeds.
- // Seed type might be smaller than numerical promotion size, but Hash
- // should be at least that size, so we use Hash as intermediate type.
- static_assert(sizeof(Seed) <= sizeof(Hash),
- "Hash must be at least size of Seed");
- // Multiply by a large random prime (one-to-one for any prefix of bits)
- Hash tmp = count * kToRawSeedFactor;
- // Within-byte one-to-one mixing
- static_assert((kSeedMixMask & (kSeedMixMask >> kSeedMixShift)) == 0,
- "Illegal mask+shift");
- tmp ^= (tmp & kSeedMixMask) >> kSeedMixShift;
- raw_seed_ = static_cast<Seed>(tmp);
- // dynamic verification
- assert(GetOrdinalSeed() == count);
- }
- Seed GetOrdinalSeed() {
- Hash tmp = raw_seed_;
- // Within-byte one-to-one mixing (its own inverse)
- tmp ^= (tmp & kSeedMixMask) >> kSeedMixShift;
- // Multiply by 64-bit multiplicative inverse
- static_assert(kToRawSeedFactor * kFromRawSeedFactor == Hash{1},
- "Must be inverses");
- return static_cast<Seed>(tmp * kFromRawSeedFactor);
- }
- protected:
- // For expanding hash:
- // large random prime
- static constexpr Hash kCoeffAndResultFactor =
- static_cast<Hash>(0xc28f82822b650bedULL);
- static constexpr uint64_t kAltCoeffFactor1 = 0x876f170be4f1fcb9U;
- static constexpr uint64_t kAltCoeffFactor2 = 0xf0433a4aecda4c5fU;
- // random-ish data
- static constexpr uint32_t kCoeffXor32 = 0xa6293635U;
- static constexpr uint64_t kCoeffXor64 = 0xc367844a6e52731dU;
- // For pre-mixing seeds
- static constexpr Hash kSeedMixMask = static_cast<Hash>(0xf0f0f0f0f0f0f0f0ULL);
- static constexpr unsigned kSeedMixShift = 4U;
- static constexpr Hash kToRawSeedFactor =
- static_cast<Hash>(0xc78219a23eeadd03ULL);
- static constexpr Hash kFromRawSeedFactor =
- static_cast<Hash>(0xfe1a137d14b475abULL);
- // See class description
- Seed raw_seed_ = 0;
- };
- // StandardRehasher (and StandardRehasherAdapter): A variant of
- // StandardHasher that uses the same type for keys as for hashes.
- // This is primarily intended for building a Ribbon filter
- // from existing hashes without going back to original inputs in
- // order to apply a different seed. This hasher seeds a 1-to-1 mixing
- // transformation to apply a seed to an existing hash. (Untested for
- // hash-sized keys that are not already uniformly distributed.) This
- // transformation builds on the seed pre-mixing done in StandardHasher.
- //
- // Testing suggests essentially no degradation of solution success rate
- // vs. going back to original inputs when changing hash seeds. For example:
- // Average re-seeds for solution with r=128, 1.02x overhead, and ~100k keys
- // is about 1.10 for both StandardHasher and StandardRehasher.
- //
- // StandardRehasher is not really recommended for general PHSFs (not
- // filters) because a collision in the original hash could prevent
- // construction despite re-seeding the Rehasher. (Such collisions
- // do not interfere with filter construction.)
- //
- // concept RehasherTypesAndSettings: like TypesAndSettings but
- // does not require Key or HashFn.
- template <class RehasherTypesAndSettings>
- class StandardRehasherAdapter : public RehasherTypesAndSettings {
- public:
- using Hash = typename RehasherTypesAndSettings::Hash;
- using Key = Hash;
- using Seed = typename RehasherTypesAndSettings::Seed;
- static Hash HashFn(const Hash& input, Seed raw_seed) {
- // Note: raw_seed is already lightly pre-mixed, and this multiplication
- // by a large prime is sufficient mixing (low-to-high bits) on top of
- // that for good FastRange results, which depends primarily on highest
- // bits. (The hashed CoeffRow and ResultRow are less sensitive to
- // mixing than Start.)
- // Also note: did consider adding ^ (input >> some) before the
- // multiplication, but doesn't appear to be necessary.
- return (input ^ raw_seed) * kRehashFactor;
- }
- private:
- static constexpr Hash kRehashFactor =
- static_cast<Hash>(0x6193d459236a3a0dULL);
- };
- // See comment on StandardRehasherAdapter
- template <class RehasherTypesAndSettings>
- using StandardRehasher =
- StandardHasher<StandardRehasherAdapter<RehasherTypesAndSettings>>;
- #ifdef _MSC_VER
- #pragma warning(pop)
- #endif
- // Especially with smaller hashes (e.g. 32 bit), there can be noticeable
- // false positives due to collisions in the Hash returned by GetHash.
- // This function returns the expected FP rate due to those collisions,
- // which can be added to the expected FP rate from the underlying data
- // structure. (Note: technically, a + b is only a good approximation of
- // 1-(1-a)(1-b) == a + b - a*b, if a and b are much closer to 0 than to 1.)
- // The number of entries added can be a double here in case it's an
- // average.
- template <class Hasher, typename Numerical>
- double ExpectedCollisionFpRate(const Hasher& hasher, Numerical added) {
- // Standardize on the 'double' specialization
- return ExpectedCollisionFpRate(hasher, 1.0 * added);
- }
- template <class Hasher>
- double ExpectedCollisionFpRate(const Hasher& /*hasher*/, double added) {
- // Technically, there could be overlap among the added, but ignoring that
- // is typically close enough.
- return added / std::pow(256.0, sizeof(typename Hasher::Hash));
- }
- // StandardBanding: a canonical implementation of BandingStorage and
- // BacktrackStorage, with convenience API for banding (solving with on-the-fly
- // Gaussian elimination) with and without backtracking.
- template <class TypesAndSettings>
- class StandardBanding : public StandardHasher<TypesAndSettings> {
- public:
- IMPORT_RIBBON_TYPES_AND_SETTINGS(TypesAndSettings);
- StandardBanding(Index num_slots = 0, Index backtrack_size = 0) {
- Reset(num_slots, backtrack_size);
- }
- void Reset(Index num_slots, Index backtrack_size = 0) {
- if (num_slots == 0) {
- // Unusual (TypesAndSettings::kAllowZeroStarts) or "uninitialized"
- num_starts_ = 0;
- } else {
- // Normal
- assert(num_slots >= kCoeffBits);
- if (num_slots > num_slots_allocated_) {
- coeff_rows_.reset(new CoeffRow[num_slots]());
- if (!TypesAndSettings::kHomogeneous) {
- // Note: don't strictly have to zero-init result_rows,
- // except possible information leakage, etc ;)
- result_rows_.reset(new ResultRow[num_slots]());
- }
- num_slots_allocated_ = num_slots;
- } else {
- for (Index i = 0; i < num_slots; ++i) {
- coeff_rows_[i] = 0;
- if (!TypesAndSettings::kHomogeneous) {
- // Note: don't strictly have to zero-init result_rows,
- // except possible information leakage, etc ;)
- result_rows_[i] = 0;
- }
- }
- }
- num_starts_ = num_slots - kCoeffBits + 1;
- }
- EnsureBacktrackSize(backtrack_size);
- }
- void EnsureBacktrackSize(Index backtrack_size) {
- if (backtrack_size > backtrack_size_) {
- backtrack_.reset(new Index[backtrack_size]);
- backtrack_size_ = backtrack_size;
- }
- }
- // ********************************************************************
- // From concept BandingStorage
- inline bool UsePrefetch() const {
- // A rough guesstimate of when prefetching during construction pays off.
- // TODO: verify/validate
- return num_starts_ > 1500;
- }
- inline void Prefetch(Index i) const {
- PREFETCH(&coeff_rows_[i], 1 /* rw */, 1 /* locality */);
- if (!TypesAndSettings::kHomogeneous) {
- PREFETCH(&result_rows_[i], 1 /* rw */, 1 /* locality */);
- }
- }
- inline void LoadRow(Index i, CoeffRow* cr, ResultRow* rr,
- bool for_back_subst) const {
- *cr = coeff_rows_[i];
- if (TypesAndSettings::kHomogeneous) {
- if (for_back_subst && *cr == 0) {
- // Cheap pseudorandom data to fill unconstrained solution rows
- *rr = static_cast<ResultRow>(i * 0x9E3779B185EBCA87ULL);
- } else {
- *rr = 0;
- }
- } else {
- *rr = result_rows_[i];
- }
- }
- inline void StoreRow(Index i, CoeffRow cr, ResultRow rr) {
- coeff_rows_[i] = cr;
- if (TypesAndSettings::kHomogeneous) {
- assert(rr == 0);
- } else {
- result_rows_[i] = rr;
- }
- }
- inline Index GetNumStarts() const { return num_starts_; }
- // from concept BacktrackStorage, for when backtracking is used
- inline bool UseBacktrack() const { return true; }
- inline void BacktrackPut(Index i, Index to_save) { backtrack_[i] = to_save; }
- inline Index BacktrackGet(Index i) const { return backtrack_[i]; }
- // ********************************************************************
- // Some useful API, still somewhat low level. Here an input is
- // a Key for filters, or std::pair<Key, ResultRow> for general PHSF.
- // Adds a range of inputs to the banding, returning true if successful.
- // False means none or some may have been successfully added, so it's
- // best to Reset this banding before any further use.
- //
- // Adding can fail even before all the "slots" are completely "full".
- //
- template <typename InputIterator>
- bool AddRange(InputIterator begin, InputIterator end) {
- assert(num_starts_ > 0 || TypesAndSettings::kAllowZeroStarts);
- if (TypesAndSettings::kAllowZeroStarts && num_starts_ == 0) {
- // Unusual. Can't add any in this case.
- return begin == end;
- }
- // Normal
- return BandingAddRange(this, *this, begin, end);
- }
- // Adds a range of inputs to the banding, returning true if successful,
- // or if unsuccessful, rolls back to state before this call and returns
- // false. Caller guarantees that the number of inputs in this batch
- // does not exceed `backtrack_size` provided to Reset.
- //
- // Adding can fail even before all the "slots" are completely "full".
- //
- template <typename InputIterator>
- bool AddRangeOrRollBack(InputIterator begin, InputIterator end) {
- assert(num_starts_ > 0 || TypesAndSettings::kAllowZeroStarts);
- if (TypesAndSettings::kAllowZeroStarts && num_starts_ == 0) {
- // Unusual. Can't add any in this case.
- return begin == end;
- }
- // else Normal
- return BandingAddRange(this, this, *this, begin, end);
- }
- // Adds a single input to the banding, returning true if successful.
- // If unsuccessful, returns false and banding state is unchanged.
- //
- // Adding can fail even before all the "slots" are completely "full".
- //
- bool Add(const AddInput& input) {
- // Pointer can act as iterator
- return AddRange(&input, &input + 1);
- }
- // Return the number of "occupied" rows (with non-zero coefficients stored).
- Index GetOccupiedCount() const {
- Index count = 0;
- if (num_starts_ > 0) {
- const Index num_slots = num_starts_ + kCoeffBits - 1;
- for (Index i = 0; i < num_slots; ++i) {
- if (coeff_rows_[i] != 0) {
- ++count;
- }
- }
- }
- return count;
- }
- // Returns whether a row is "occupied" in the banding (non-zero
- // coefficients stored). (Only recommended for debug/test)
- bool IsOccupied(Index i) { return coeff_rows_[i] != 0; }
- // ********************************************************************
- // High-level API
- // Iteratively (a) resets the structure for `num_slots`, (b) attempts
- // to add the range of inputs, and (c) if unsuccessful, chooses next
- // hash seed, until either successful or unsuccessful with all the
- // allowed seeds. Returns true if successful. In that case, use
- // GetOrdinalSeed() or GetRawSeed() to get the successful seed.
- //
- // The allowed sequence of hash seeds is determined by
- // `starting_ordinal_seed,` the first ordinal seed to be attempted
- // (see StandardHasher), and `ordinal_seed_mask,` a bit mask (power of
- // two minus one) for the range of ordinal seeds to consider. The
- // max number of seeds considered will be ordinal_seed_mask + 1.
- // For filters we suggest `starting_ordinal_seed` be chosen randomly
- // or round-robin, to minimize false positive correlations between keys.
- //
- // If unsuccessful, how best to continue is going to be application
- // specific. It should be possible to choose parameters such that
- // failure is extremely unlikely, using max_seed around 32 to 64.
- // (TODO: APIs to help choose parameters) One option for fallback in
- // constructing a filter is to construct a Bloom filter instead.
- // Increasing num_slots is an option, but should not be used often
- // unless construction maximum latency is a concern (rather than
- // average running time of construction). Instead, choose parameters
- // appropriately and trust that seeds are independent. (Also,
- // increasing num_slots without changing hash seed would have a
- // significant correlation in success, rather than independence.)
- template <typename InputIterator>
- bool ResetAndFindSeedToSolve(Index num_slots, InputIterator begin,
- InputIterator end,
- Seed starting_ordinal_seed = 0U,
- Seed ordinal_seed_mask = 63U) {
- // power of 2 minus 1
- assert((ordinal_seed_mask & (ordinal_seed_mask + 1)) == 0);
- // starting seed is within mask
- assert((starting_ordinal_seed & ordinal_seed_mask) ==
- starting_ordinal_seed);
- starting_ordinal_seed &= ordinal_seed_mask; // if not debug
- Seed cur_ordinal_seed = starting_ordinal_seed;
- do {
- StandardHasher<TypesAndSettings>::SetOrdinalSeed(cur_ordinal_seed);
- Reset(num_slots);
- bool success = AddRange(begin, end);
- if (success) {
- return true;
- }
- cur_ordinal_seed = (cur_ordinal_seed + 1) & ordinal_seed_mask;
- } while (cur_ordinal_seed != starting_ordinal_seed);
- // Reached limit by circling around
- return false;
- }
- static std::size_t EstimateMemoryUsage(uint32_t num_slots) {
- std::size_t bytes_coeff_rows = num_slots * sizeof(CoeffRow);
- std::size_t bytes_result_rows = num_slots * sizeof(ResultRow);
- std::size_t bytes_backtrack = 0;
- std::size_t bytes_banding =
- bytes_coeff_rows + bytes_result_rows + bytes_backtrack;
- return bytes_banding;
- }
- protected:
- // TODO: explore combining in a struct
- std::unique_ptr<CoeffRow[]> coeff_rows_;
- std::unique_ptr<ResultRow[]> result_rows_;
- // We generally store "starts" instead of slots for speed of GetStart(),
- // as in StandardHasher.
- Index num_starts_ = 0;
- Index num_slots_allocated_ = 0;
- std::unique_ptr<Index[]> backtrack_;
- Index backtrack_size_ = 0;
- };
- // Implements concept SimpleSolutionStorage, mostly for demonstration
- // purposes. This is "in memory" only because it does not handle byte
- // ordering issues for serialization.
- template <class TypesAndSettings>
- class InMemSimpleSolution {
- public:
- IMPORT_RIBBON_TYPES_AND_SETTINGS(TypesAndSettings);
- void PrepareForNumStarts(Index num_starts) {
- if (TypesAndSettings::kAllowZeroStarts && num_starts == 0) {
- // Unusual
- num_starts_ = 0;
- } else {
- // Normal
- const Index num_slots = num_starts + kCoeffBits - 1;
- assert(num_slots >= kCoeffBits);
- if (num_slots > num_slots_allocated_) {
- // Do not need to init the memory
- solution_rows_.reset(new ResultRow[num_slots]);
- num_slots_allocated_ = num_slots;
- }
- num_starts_ = num_starts;
- }
- }
- Index GetNumStarts() const { return num_starts_; }
- ResultRow Load(Index slot_num) const { return solution_rows_[slot_num]; }
- void Store(Index slot_num, ResultRow solution_row) {
- solution_rows_[slot_num] = solution_row;
- }
- // ********************************************************************
- // High-level API
- template <typename BandingStorage>
- void BackSubstFrom(const BandingStorage& bs) {
- if (TypesAndSettings::kAllowZeroStarts && bs.GetNumStarts() == 0) {
- // Unusual
- PrepareForNumStarts(0);
- } else {
- // Normal
- SimpleBackSubst(this, bs);
- }
- }
- template <typename PhsfQueryHasher>
- ResultRow PhsfQuery(const Key& input, const PhsfQueryHasher& hasher) const {
- // assert(!TypesAndSettings::kIsFilter); Can be useful in testing
- if (TypesAndSettings::kAllowZeroStarts && num_starts_ == 0) {
- // Unusual
- return 0;
- } else {
- // Normal
- return SimplePhsfQuery(input, hasher, *this);
- }
- }
- template <typename FilterQueryHasher>
- bool FilterQuery(const Key& input, const FilterQueryHasher& hasher) const {
- assert(TypesAndSettings::kIsFilter);
- if (TypesAndSettings::kAllowZeroStarts && num_starts_ == 0) {
- // Unusual. Zero starts presumes no keys added -> always false
- return false;
- } else {
- // Normal, or upper_num_columns_ == 0 means "no space for data" and
- // thus will always return true.
- return SimpleFilterQuery(input, hasher, *this);
- }
- }
- double ExpectedFpRate() const {
- assert(TypesAndSettings::kIsFilter);
- if (TypesAndSettings::kAllowZeroStarts && num_starts_ == 0) {
- // Unusual, but we don't have FPs if we always return false.
- return 0.0;
- }
- // else Normal
- // Each result (solution) bit (column) cuts FP rate in half
- return std::pow(0.5, 8U * sizeof(ResultRow));
- }
- // ********************************************************************
- // Static high-level API
- // Round up to a number of slots supported by this structure. Note that
- // this needs to be must be taken into account for the banding if this
- // solution layout/storage is to be used.
- static Index RoundUpNumSlots(Index num_slots) {
- // Must be at least kCoeffBits for at least one start
- // Or if not smash, even more because hashing not equipped
- // for stacking up so many entries on a single start location
- auto min_slots = kCoeffBits * (TypesAndSettings::kUseSmash ? 1 : 2);
- return std::max(num_slots, static_cast<Index>(min_slots));
- }
- protected:
- // We generally store "starts" instead of slots for speed of GetStart(),
- // as in StandardHasher.
- Index num_starts_ = 0;
- Index num_slots_allocated_ = 0;
- std::unique_ptr<ResultRow[]> solution_rows_;
- };
- // Implements concept InterleavedSolutionStorage always using little-endian
- // byte order, so easy for serialization/deserialization. This implementation
- // fully supports fractional bits per key, where any number of segments
- // (number of bytes multiple of sizeof(CoeffRow)) can be used with any number
- // of slots that is a multiple of kCoeffBits.
- //
- // The structure is passed an externally allocated/de-allocated byte buffer
- // that is optionally pre-populated (from storage) for answering queries,
- // or can be populated by BackSubstFrom.
- //
- template <class TypesAndSettings>
- class SerializableInterleavedSolution {
- public:
- IMPORT_RIBBON_TYPES_AND_SETTINGS(TypesAndSettings);
- // Does not take ownership of `data` but uses it (up to `data_len` bytes)
- // throughout lifetime
- SerializableInterleavedSolution(char* data, size_t data_len)
- : data_(data), data_len_(data_len) {}
- void PrepareForNumStarts(Index num_starts) {
- assert(num_starts == 0 || (num_starts % kCoeffBits == 1));
- num_starts_ = num_starts;
- InternalConfigure();
- }
- Index GetNumStarts() const { return num_starts_; }
- Index GetNumBlocks() const {
- const Index num_slots = num_starts_ + kCoeffBits - 1;
- return num_slots / kCoeffBits;
- }
- Index GetUpperNumColumns() const { return upper_num_columns_; }
- Index GetUpperStartBlock() const { return upper_start_block_; }
- Index GetNumSegments() const {
- return static_cast<Index>(data_len_ / sizeof(CoeffRow));
- }
- CoeffRow LoadSegment(Index segment_num) const {
- assert(data_ != nullptr); // suppress clang analyzer report
- return DecodeFixedGeneric<CoeffRow>(data_ + segment_num * sizeof(CoeffRow));
- }
- void StoreSegment(Index segment_num, CoeffRow val) {
- assert(data_ != nullptr); // suppress clang analyzer report
- EncodeFixedGeneric(data_ + segment_num * sizeof(CoeffRow), val);
- }
- void PrefetchSegmentRange(Index begin_segment_num,
- Index end_segment_num) const {
- if (end_segment_num == begin_segment_num) {
- // Nothing to do
- return;
- }
- char* cur = data_ + begin_segment_num * sizeof(CoeffRow);
- char* last = data_ + (end_segment_num - 1) * sizeof(CoeffRow);
- while (cur < last) {
- PREFETCH(cur, 0 /* rw */, 1 /* locality */);
- cur += CACHE_LINE_SIZE;
- }
- PREFETCH(last, 0 /* rw */, 1 /* locality */);
- }
- // ********************************************************************
- // High-level API
- void ConfigureForNumBlocks(Index num_blocks) {
- if (num_blocks == 0) {
- PrepareForNumStarts(0);
- } else {
- PrepareForNumStarts(num_blocks * kCoeffBits - kCoeffBits + 1);
- }
- }
- void ConfigureForNumSlots(Index num_slots) {
- assert(num_slots % kCoeffBits == 0);
- ConfigureForNumBlocks(num_slots / kCoeffBits);
- }
- template <typename BandingStorage>
- void BackSubstFrom(const BandingStorage& bs) {
- if (TypesAndSettings::kAllowZeroStarts && bs.GetNumStarts() == 0) {
- // Unusual
- PrepareForNumStarts(0);
- } else {
- // Normal
- InterleavedBackSubst(this, bs);
- }
- }
- template <typename PhsfQueryHasher>
- ResultRow PhsfQuery(const Key& input, const PhsfQueryHasher& hasher) const {
- // assert(!TypesAndSettings::kIsFilter); Can be useful in testing
- if (TypesAndSettings::kAllowZeroStarts && num_starts_ == 0) {
- // Unusual
- return 0;
- } else {
- // Normal
- // NOTE: not using a struct to encourage compiler optimization
- Hash hash;
- Index segment_num;
- Index num_columns;
- Index start_bit;
- InterleavedPrepareQuery(input, hasher, *this, &hash, &segment_num,
- &num_columns, &start_bit);
- return InterleavedPhsfQuery(hash, segment_num, num_columns, start_bit,
- hasher, *this);
- }
- }
- template <typename FilterQueryHasher>
- bool FilterQuery(const Key& input, const FilterQueryHasher& hasher) const {
- assert(TypesAndSettings::kIsFilter);
- if (TypesAndSettings::kAllowZeroStarts && num_starts_ == 0) {
- // Unusual. Zero starts presumes no keys added -> always false
- return false;
- } else {
- // Normal, or upper_num_columns_ == 0 means "no space for data" and
- // thus will always return true.
- // NOTE: not using a struct to encourage compiler optimization
- Hash hash;
- Index segment_num;
- Index num_columns;
- Index start_bit;
- InterleavedPrepareQuery(input, hasher, *this, &hash, &segment_num,
- &num_columns, &start_bit);
- return InterleavedFilterQuery(hash, segment_num, num_columns, start_bit,
- hasher, *this);
- }
- }
- double ExpectedFpRate() const {
- assert(TypesAndSettings::kIsFilter);
- if (TypesAndSettings::kAllowZeroStarts && num_starts_ == 0) {
- // Unusual. Zero starts presumes no keys added -> always false
- return 0.0;
- }
- // else Normal
- // Note: Ignoring smash setting; still close enough in that case
- double lower_portion =
- (upper_start_block_ * 1.0 * kCoeffBits) / num_starts_;
- // Each result (solution) bit (column) cuts FP rate in half. Weight that
- // for upper and lower number of bits (columns).
- return lower_portion * std::pow(0.5, upper_num_columns_ - 1) +
- (1.0 - lower_portion) * std::pow(0.5, upper_num_columns_);
- }
- // ********************************************************************
- // Static high-level API
- // Round up to a number of slots supported by this structure. Note that
- // this needs to be must be taken into account for the banding if this
- // solution layout/storage is to be used.
- static Index RoundUpNumSlots(Index num_slots) {
- // Must be multiple of kCoeffBits
- Index corrected = (num_slots + kCoeffBits - 1) / kCoeffBits * kCoeffBits;
- // Do not use num_starts==1 unless kUseSmash, because the hashing
- // might not be equipped for stacking up so many entries on a
- // single start location.
- if (!TypesAndSettings::kUseSmash && corrected == kCoeffBits) {
- corrected += kCoeffBits;
- }
- return corrected;
- }
- // Round down to a number of slots supported by this structure. Note that
- // this needs to be must be taken into account for the banding if this
- // solution layout/storage is to be used.
- static Index RoundDownNumSlots(Index num_slots) {
- // Must be multiple of kCoeffBits
- Index corrected = num_slots / kCoeffBits * kCoeffBits;
- // Do not use num_starts==1 unless kUseSmash, because the hashing
- // might not be equipped for stacking up so many entries on a
- // single start location.
- if (!TypesAndSettings::kUseSmash && corrected == kCoeffBits) {
- corrected = 0;
- }
- return corrected;
- }
- // Compute the number of bytes for a given number of slots and desired
- // FP rate. Since desired FP rate might not be exactly achievable,
- // rounding_bias32==0 means to always round toward lower FP rate
- // than desired (more bytes); rounding_bias32==max uint32_t means always
- // round toward higher FP rate than desired (fewer bytes); other values
- // act as a proportional threshold or bias between the two.
- static size_t GetBytesForFpRate(Index num_slots, double desired_fp_rate,
- uint32_t rounding_bias32) {
- return InternalGetBytesForFpRate(num_slots, desired_fp_rate,
- 1.0 / desired_fp_rate, rounding_bias32);
- }
- // The same, but specifying desired accuracy as 1.0 / FP rate, or
- // one_in_fp_rate. E.g. desired_one_in_fp_rate=100 means 1% FP rate.
- static size_t GetBytesForOneInFpRate(Index num_slots,
- double desired_one_in_fp_rate,
- uint32_t rounding_bias32) {
- return InternalGetBytesForFpRate(num_slots, 1.0 / desired_one_in_fp_rate,
- desired_one_in_fp_rate, rounding_bias32);
- }
- protected:
- static size_t InternalGetBytesForFpRate(Index num_slots,
- double desired_fp_rate,
- double desired_one_in_fp_rate,
- uint32_t rounding_bias32) {
- assert(TypesAndSettings::kIsFilter);
- if (TypesAndSettings::kAllowZeroStarts) {
- if (num_slots == 0) {
- // Unusual. Zero starts presumes no keys added -> always false (no FPs)
- return 0U;
- }
- } else {
- assert(num_slots > 0);
- }
- // Must be rounded up already.
- assert(RoundUpNumSlots(num_slots) == num_slots);
- if (desired_one_in_fp_rate > 1.0 && desired_fp_rate < 1.0) {
- // Typical: less than 100% FP rate
- if (desired_one_in_fp_rate <= static_cast<ResultRow>(-1)) {
- // Typical: Less than maximum result row entropy
- ResultRow rounded = static_cast<ResultRow>(desired_one_in_fp_rate);
- int lower_columns = FloorLog2(rounded);
- double lower_columns_fp_rate = std::pow(2.0, -lower_columns);
- double upper_columns_fp_rate = std::pow(2.0, -(lower_columns + 1));
- // Floating point don't let me down!
- assert(lower_columns_fp_rate >= desired_fp_rate);
- assert(upper_columns_fp_rate <= desired_fp_rate);
- double lower_portion = (desired_fp_rate - upper_columns_fp_rate) /
- (lower_columns_fp_rate - upper_columns_fp_rate);
- // Floating point don't let me down!
- assert(lower_portion >= 0.0);
- assert(lower_portion <= 1.0);
- double rounding_bias = (rounding_bias32 + 0.5) / double{0x100000000};
- assert(rounding_bias > 0.0);
- assert(rounding_bias < 1.0);
- // Note: Ignoring smash setting; still close enough in that case
- Index num_starts = num_slots - kCoeffBits + 1;
- // Lower upper_start_block means lower FP rate (higher accuracy)
- Index upper_start_block = static_cast<Index>(
- (lower_portion * num_starts + rounding_bias) / kCoeffBits);
- Index num_blocks = num_slots / kCoeffBits;
- assert(upper_start_block < num_blocks);
- // Start by assuming all blocks use lower number of columns
- Index num_segments = num_blocks * static_cast<Index>(lower_columns);
- // Correct by 1 each for blocks using upper number of columns
- num_segments += (num_blocks - upper_start_block);
- // Total bytes
- return num_segments * sizeof(CoeffRow);
- } else {
- // one_in_fp_rate too big, thus requested FP rate is smaller than
- // supported. Use max number of columns for minimum supported FP rate.
- return num_slots * sizeof(ResultRow);
- }
- } else {
- // Effectively asking for 100% FP rate, or NaN etc.
- if (TypesAndSettings::kAllowZeroStarts) {
- // Zero segments
- return 0U;
- } else {
- // One segment (minimum size, maximizing FP rate)
- return sizeof(CoeffRow);
- }
- }
- }
- void InternalConfigure() {
- const Index num_blocks = GetNumBlocks();
- Index num_segments = GetNumSegments();
- if (num_blocks == 0) {
- // Exceptional
- upper_num_columns_ = 0;
- upper_start_block_ = 0;
- } else {
- // Normal
- upper_num_columns_ =
- (num_segments + /*round up*/ num_blocks - 1) / num_blocks;
- upper_start_block_ = upper_num_columns_ * num_blocks - num_segments;
- // Unless that's more columns than supported by ResultRow data type
- if (upper_num_columns_ > 8U * sizeof(ResultRow)) {
- // Use maximum columns (there will be space unused)
- upper_num_columns_ = static_cast<Index>(8U * sizeof(ResultRow));
- upper_start_block_ = 0;
- num_segments = num_blocks * upper_num_columns_;
- }
- }
- // Update data_len_ for correct rounding and/or unused space
- // NOTE: unused space stays gone if we PrepareForNumStarts again.
- // We are prioritizing minimizing the number of fields over making
- // the "unusued space" feature work well.
- data_len_ = num_segments * sizeof(CoeffRow);
- }
- char* const data_;
- size_t data_len_;
- Index num_starts_ = 0;
- Index upper_num_columns_ = 0;
- Index upper_start_block_ = 0;
- };
- } // namespace ribbon
- } // namespace ROCKSDB_NAMESPACE
- // For convenience working with templates
- #define IMPORT_RIBBON_IMPL_TYPES(TypesAndSettings) \
- using Hasher = ROCKSDB_NAMESPACE::ribbon::StandardHasher<TypesAndSettings>; \
- using Banding = \
- ROCKSDB_NAMESPACE::ribbon::StandardBanding<TypesAndSettings>; \
- using SimpleSoln = \
- ROCKSDB_NAMESPACE::ribbon::InMemSimpleSolution<TypesAndSettings>; \
- using InterleavedSoln = \
- ROCKSDB_NAMESPACE::ribbon::SerializableInterleavedSolution< \
- TypesAndSettings>; \
- static_assert(sizeof(Hasher) + sizeof(Banding) + sizeof(SimpleSoln) + \
- sizeof(InterleavedSoln) > \
- 0, \
- "avoid unused warnings, semicolon expected after macro call")
|